

Revision 4.3

October 2025

Please read this user manual carefully before operating the appliance, and retain it for future reference.

To prevent damage to the components, ensure that all connections to the SkyHub device are made while the device is powered off.

	List of Figures
1	Description1.1 Compatible drones1.2 Interaction diagrams with drones
2	Supported sensors 2.1 Altimeter 2.2 Ground-Penetrating Radar (GPR) 2.3 Magnetometer 2.4 Echosounders 2.5 Methane detector 2.6 Metal detector 2.7 Other sensors and devices
3	Legal Notice 3.1 Disclaimer 1 3.2 Trademarks 1 3.3 Document License 1 3.4 Contact & Support 1
4	Preparation14.1 Prerequisites1
5	Assembling 5.1 Power-on checks
6	Quick Start: DJI M300/M350 RTK 2 6.1 Hardware requirements 2 6.2 Software requirements for the Windows PC 2 6.3 Software requirements for the Remote Controller 2 6.4 Network requirements 2 6.5 Components 2 6.6 Physical assembly 2 6.7 Enabling the autopilot 2 6.8 Enabling the altimeter 2
7	Quick Start: ArduPilot37.1 Hardware requirements37.2 Software requirements for the Windows PC37.3 Physical setup3

	7.4 UgCS configuration.					 					33
8		ents									39
		nts for the Windows PC									
	8.3 Physical setup					 					41
	8.4 Autopilot configurati	ion				 					41
9											47
		ot									
	9.2 DJI Obstacle Sensor	s Disabling				 					48
	9.3 UgCS Companion of	n DJI remote controlle	r			 					49
10	10 Setup Interface to ArduPi	lot									51
11	11 Setup Interface to PX4										57
12	12 Ainstein US-D1 Altimeter										63
	12.1 Ainstein US-D1 Alti	imeter Configuration P	arameters .			 					63
10	12 T. L. CE20/D. A.L.										. =
13	13 Lightware SF30/D Altime										65
	13.1 Lightware SF30/D A	Attimeter Configuration	n Parameters			 					65
14	14 Nanoradar NRA24 Altime										67
	14.1 Altimeter Nanoradar	NRA24 Altimeter Co	nfiguration P	arameter	s	 					67
15	15 Zond Aero NG & LF										69
13		F Configuration Param	atore								
	13.1 Zona Acto No & Li	Configuration 1 arani	ctcrs			 	• •	• •	• •	• •	0)
16	16 Zond Aero GPR										73
		nfiguration Parameters				 					73
17	17 SBES: EchoLogger										75
	17.1 SBES: EchoLogger										
	17.2 SBES: EchoLogger	Configuration Paramet	ers (Dual free	quency)		 					77
18	18 MBES: Cerulean Surveyo	or 240-16									81
		rveyor Configuration F	Parameters .			 					81
19	19 Magnetometer MagNIMB	SUS									83
		bly									
		ly									
	19.3 Magnetometer MagN	NIMBUS Configuratio	n Parameters			 					84
20	20 Magnetometer MagDrone	R1									87
	20.1 Magnetometer MagI	Orone R1 Configuratio	n Parameters			 					87
21	21 Logon Folgen 1 / 2 Methon	o Dotostor									Qn
41	21 Laser Falcon 1 / 2 Methan	lethane Detector Confi	aumatica De	mata							89
	21.1 Laser Falcon 1 / 2 M	emane Detector Confi	guration Para	meters.		 		• •			09
22	22 Laser Falcon Plus Methan										91
	22.1 Laser Falcon Plus M	lethane Detector Confi	guration Para	meters.		 					91
23	23 FluX Aero Methane Sniffo	er									93
		Detector Configuration	Parameters			 					
						 			-	-	

24	Nanoradar MR72 Radar 24.1 Nanoradar MR72 Radar Configuration Parameters	95 95
25	GNSS Output 25.1 GNSS Output Configuration Parameters	97 97
26	GNSS Receiver 26.1 GNSS Receiver Configuration Parameters	99
27	Universal Driver 27.1 Universal Driver Configuration Parameters	101 101
28	Wind Sensor (FTT) 28.1 Wind Sensor (FTT) Configuration Parameters	103
29	Ebinger VEMOS AIR 29.1 Ebinger VEMOS AIR Configuration Parameters	105 105
30	Geolux LX-80-AB 30.1 Geolux LX-80-AB Configuration Parameters	107 107
31	Geolux RSS-2-AB 31.1 Geolux RSS-2-AB Configuration Parameters	109 109
32	Drop Messenger 32.1 Drop Messenger Configuration Parameters	111 111
33	True Terrain Following 33.1 Hybrid route	114
34	Grasshopper Mode 34.1 Route requirements	121
35	Obstacle Avoidance 35.1 Setup process 35.2 Safety actions 35.3 Altitude sources 35.4 Safety sources 35.5 Configuration Parameters Summary	127 128 129
36	About Log Files	131
37	Position Log 37.1 Common Columns Description 37.2 Anemometer Columns Description 37.3 Altimeter Columns Description 37.4 Echosounder Columns Description 37.5 Cerulean Sonar Surveyor 240-16 Columns Description 37.6 FluX Aero Methane Sniffer Columns Description 37.7 Pergam Falcon 1/2/Plus Columns Description 37.8 GPS Receiver Columns Description	134 134 135 135 135

	37.9	Ground-Penetrating Radar Columns Description	136
	37.10	Ebinger VEMOS AIR Columns Description	136
		Obstacle Detector Columns Description	
		Lightware SF30/D Altimeter Description	
38	Log F	Tiles Management	137
	38.1	Access to the log files	137
		Data download	
39	Upgra	ade/Downgrade Firmware	139
	39.1	Firmware upgrade process	139
		Firmware downgrade process	
40	Confi	guration Parameter Reference	143
	40.1	SkyHub Configuration Parameters	143

Figure 1.1: DJI SDK drone interaction diagram	
Figure 1.2: Pixhawk autopilot based drone interaction diagram	5
Figure 4.1: Windows Wi-Fi connection dialog. PIN mode	
Figure 4.2: Windows Wi-Fi connection dialog. Security key mode	
Figure 4.3: Wi-Fi address within UgCS-CPM	
Figure 4.4: Auxiliary link in UgCS-CPM	16
Figure 4.5: Ethernet address within UgCS-CPM	17
Figure 4.6: Network adapter settings on computer	18
Figure 5.1: Numbered LEDs on cable	19
Figure 7.1: ArduPilot compatibility in UgCS setup	32
Figure 7.2: ArduPilot VSM configuration	34
Figure 7.3: Auxiliary Link settings in UgCS-CPM	34
Figure 7.4: Enabling MAVlink in UgCS-CPM	36
Figure 7.5: Mission Planner MAVlink inspector	37
Figure 7.6: Mission Planner MAVlink inspector data	37
Figure 8.1: PX4 VSM in UgCS setup	40
Figure 8.2: Auxiliary Link settings in UgCS-CPM	
Figure 8.3: Enabling MAVlink in UgCS-CPM	43
Figure 8.4: MAVLINK settings	44
Figure 8.5: SkyHub PX4 TELEM2 port configuration	45
Figure 8.6: SkyHub PX4 TELEM2 port data forwarding configuration	45
Figure 8.7: SkyHub PX4 TELEM2 port baudrate configuration	45
Figure 8.8: Mavlink telemetry rate	46
Figure 9.1: M300 / M350 RTK DJI Pilot screens	49
Figure 9.2: UgCS Companion server selection button	50
Figure 9.3: UgCS Companion SkyHub and UgCS status	50
Figure 10.1: UgCS installation Support for ArduPilot vehicles	51
Figure 10.2: ArduPilot VSM configuration file	52
Figure 10.3: MAVLINK autopilot	53
Figure 10.4: MAVLINK settings	54
Figure 10.5: Mission Planner MAVlink inspector	55
Figure 10.6: Mission Planner MAVlink inspector data	
Figure 10.7: UgCS, drone telemetry	56
Figure 11.1: UgCS installation Support for PX4 based vehicles	
Figure 11.2: PX4 VSM configuration file	
Figure 11.3: MAVLINK autopilot	59
Figure 11.4: MAVLINK settings	60
Figure 11.5: SkyHub PX4 TELEM2 port configuration	61
Figure 11.6: SkyHub PX4 TELEM2 port data forwarding configuration	
Figure 11.7: SkyHub PX4 TELEM2 port baudrate configuration	
Figure 11.8: Mavlink telemetry rate	
Figure 33.1: Transition from AGL to Rangefinder mode	
Figure 33.2: Route with all segments with Rangefinder altitude	

Figure 33.3: UgCS and UgCS-CPM application open side-by-side	6
Figure 33.4: Altimeter Min/Max value setup	16
Figure 33.5: Altimeter safe altitude setup	17
Figure 33.6: First waypoint / Area scan segment with Rangefinder altitude configured	18
Figure 34.1: UgCS and UgCS-CPM application open side-by-side	22
Figure 34.2: Altimeter Min/Max value configuration	22
Figure 34.3: Grasshopper widget	23
Figure 34.4: Grasshopper widget	24
Figure 35.1: UgCS-CPM, Obstacle avoidance settings	26
Figure 35.2: UgCS-CPM, Obstacle avoidance activation values	27
Figure 35.3: UgCS-CPM, Obstacle avoidance altitude sources	28
Figure 35.4: UgCS-CPM, setup with no external radar	29
Figure 35.5: UgCS-CPM, setup with external radar	29
Figure 36.1: UgCS-CPM Logging Settings	32
Figure 38.1: UgCS-CPM Log management window	38
Figure 39.1: UgCS-CPM Firmware mismatch message	39
Figure 39.2: UgCS-CPM Firmware upgrade popup	10
Figure 39.3: UgCS-CPM Manage SkyHub Section	11
Figure 39.4: UgCS-CPM Firmware folder	11

Warning			
Note			

2 Chapter .

Description

The SkyHub solution is a hardware and software set designed to enhance commercial-off-the-shelf UAV capabilities for industrial purposes and to support integration of diverse sensors.

SkyHub solution functions:

- Data collection from sensors like GPR, methane detector, echosounder, etc. which do not have an internal data logger. Data is recorded in CSV format as well as in formats compatible with specialized software for sensor data processing and analysis (SEG-Y, NMEA-0183, etc.).
- Data fusion from the payload and UAV telemetry. Data without coordinates (non-geotagged) is in most cases useless. SkyHub uses the positioning information from the drone to geotag sensor data.
- SkyHub can supply a NMEA coordinate stream to external sensors. Some sensors have internal data recorders but require an external GPS receiver. SkyHub can act as an additional GPS receiver by providing the UAV coordinates to sensors.
- Support for True Terrain Following for DJI drones to automatically keep constant elevation over the surface using real-time data from a radar or laser altimeter.
- Support for Grasshopper mode for DJI drones. The mode provides flight between waypoints at a safe altitude and descends at waypoints to the set altitude to make measurements (using NDT sensor, echo sounder, etc.) or to drop a parcel or seismic sensor.
- Support for an external detector of obstacles to interrupt the flight and save the UAV, especially if the weather conditions or payload configuration interfere with the built-in sensors on the UAV or the UAV does not have such sensors.

1.1 Compatible drones

- DJI M350 RTK
- DJI M300 RTK
- Pixhawk-compatible (Cube) autopilots with ArduPilot or PX4 firmware

1.2 Interaction diagrams with drones

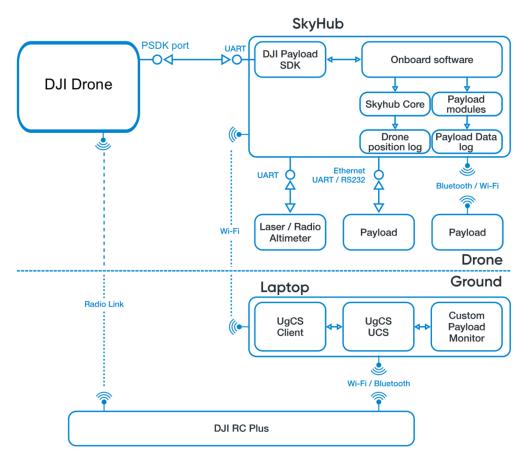


Figure 1.1. DJI SDK drone interaction diagram

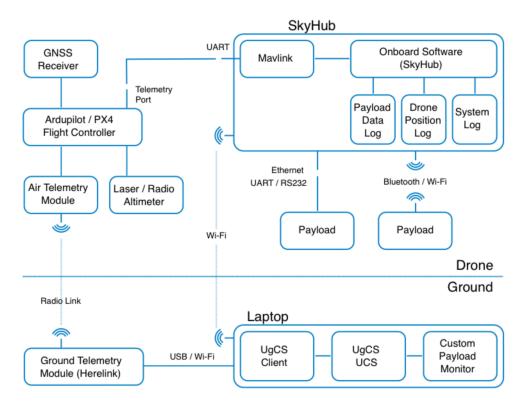


Figure 1.2. Pixhawk autopilot based drone interaction diagram

Supported sensors

2.1 Altimeter

(used for flight control in True Terrain-Following (TTF) and Grasshopper (GH) flight modes)

Manufacturer	Sensor name	Data logging on Skyhub	Data / control interface	Power feed from Skyhub	Notes
Nanoradar	NRA24	YES	UART	YES	Max range: 50 m
LightWare Lidar	SF30/D	YES	UART	YES	Max range: 200 m
Ainstein AI	US-D1	YES	UART	YES	

2.2 Ground-Penetrating Radar (GPR)

Manufacturer	Sensor name	Data logging on Skyhub	Data / control interface	Power feed from Skyhub	Notes
Radar System	Zond Aero 500	YES	Ethernet	YES	
Radar System	Zond Aero 600	YES	Ethernet	YES	
Radar System	Zond Aero 1000	YES	Ethernet	YES	
Radar System	Zond Aero LF & NG	YES	Ethernet	YES	

2.3 Magnetometer

Manufacturer	Sensor name	Data logging on Skyhub	Data / control interface	Power feed from Skyhub	Notes
SENSYS	MagDrone R3 / R4	-	-	YES	GPS feed (GPS-out) from Skyhub
SENSYS	MagDrone R1	Yes	USB	YES	

	MagNIN	MBUS				
SPH Engineering	(with Gen-2	QuSpin magne-	Yes	UART	YES	
	tometer	2011201)				

2.4 Echosounders

Manufacturer	Sensor name	Data logging on Skyhub	Data / control interface	Power feed from Skyhub	Notes
Echologger	ECT400	YES	RS-232	YES	Optionally USB
Echologger	ECT D052	YES	RS-232	YES	Optionally USB
Echologger	ECT D032	YES	RS-232	YES	Optionally USB
Echologger	ECT D24	YES	RS-232	YES	Optionally USB
Cerulean	Surveyor 240-16 MBES	YES	Ethernet	YES	

2.5 Methane detector

Manufacturer	Sensor name	Data logging on Skyhub	Data / control interface	Power feed from Skyhub	Notes
Pergam	Laser Falcon	YES	USB	YES	
Pergam	Laser Falcon 2	YES	UART	YES	
Pergam	Laser Falcon Plus	YES	Ethernet	YES	
Axetris	FluX Aero Methane Sniffer	YES	UART	YES	

2.6 Metal detector

Manufacturer	Sensor name	Data logging on Skyhub	Data / control interface	Power feed from Skyhub	Notes
Ebinger	VEMOS AIR	YES	UART	YES	

2.7 Other sensors and devices

Manufacturer	Sensor name	Data logging on Skyhub	Data / control interface	Power feed from Skyhub	Notes
FT Technologies	FT742 anemometer	YES	UART	YES	
FT Technologies	FT602 anemometer	YES	UART	YES	
Nanoradar	MR72 obstacles detector	YES	UART	YES	

Emlid	Reach M2	YES	UART / USB	-		
SPH Engineering	Water sampler messenger release device	-	GPIO / PWM	YES	Tested Ruttner sampler	with water
Geolux	LX-80	YES	UART / CAN	YES		
Geolux	RSS2-300W	YES	UART / CAN	YES		

Legal Notice

SPH Engineering reserves the right to make corrections, enhancements, improvements and other changes to its products and services and to discontinue any product or service.

Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of our products in its applications, notwithstanding any applications-related information or support that may be provided by SPH Engineering. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify SPH Engineering and its representatives against any damages arising out of the use of any of our products in safety-critical applications.

3.1 Disclaimer

Information in this document is subject to change without notice and does not represent a commitment on the part of SPH Engineering. SPH Engineering provides this document "as is" without warranty of any kind, expressed or implied, including, but not limited to, the implied warranties of fitness or merchantability for a particular purpose. SPH Engineering may make improvements and/or changes in this document or in the product(s) and/or the program(s) described in this document at any time.

3.2 Trademarks

UgCS is a registered trademark of SPH Engineering.

All other trademarks and registered trademarks mentioned in this document are the property of their respective owners.

3.3 Document License

Document contents are licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

3.4 Contact & Support

Latest documentation is available on https://www.sphengineering.com/integrated-systems/downloads For support and inquiries:

- Email: support@sphengineering.com
- $\bullet \ Website: \ https://www.sphengineering.com/support$

12

Preparation

4.1 Prerequisites

Required desktop software:

- UgCS Custom Payload Monitor v4.3.0 or higher (referred to below as UgCS-CPM).
- UgCS v5.13.0 or higher (referred to below as **UgCS**).

Required mobile software for DJI drones and remote controller:

- DJI Pilot 2 (referred to below as **DJI Pilot**)
- UgCS Companion v1.6.3. or higher

Optional:

• RJ45 Ethernet cable if the wired Auxiliary connection will be necessary.

4.1.1 Establish Auxiliary connection to SkyHub using Wi-Fi

Important: It is strongly recommended to switch on a remote controller before any operations with the SkyHub Wi-Fi.

After powering on, the SkyHub operates as a Wi-Fi access point with the following credentials:

- SSID: UgCS-SkyHub-***** (where ***** is the SkyHub serial number)
- Passphrase: 12341234

Note When connecting to SkyHub Wi-Fi for the first time, Windows will require authentication with a PIN. It is necessary to choose network security key authentication instead. Please switch to security key mode before entering the passphrase.

Figure 4.1. Windows Wi-Fi connection dialog. PIN mode

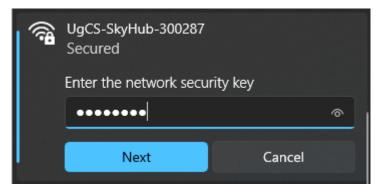


Figure 4.2. Windows Wi-Fi connection dialog. Security key mode.

When connection to the SkyHub hotspot is established:

- 1. Open the UgCS-CPM software.
- 2. Press "Settings".
- 3. Verify that the address is set to 10.1.0.1.

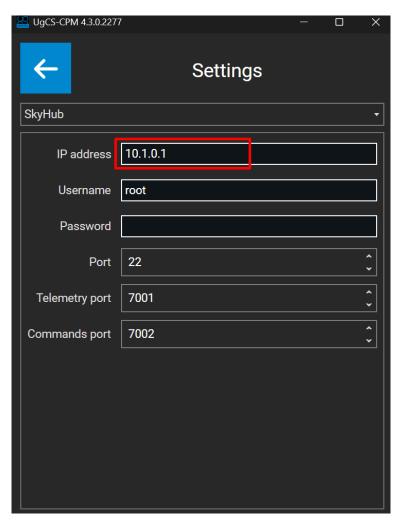


Figure 4.3. Wi-Fi address within UgCS-CPM

- 4. Press the "back arrow" and refresh the connection list.
- 5. The Auxiliary connection is established.

4.1. Prerequisites

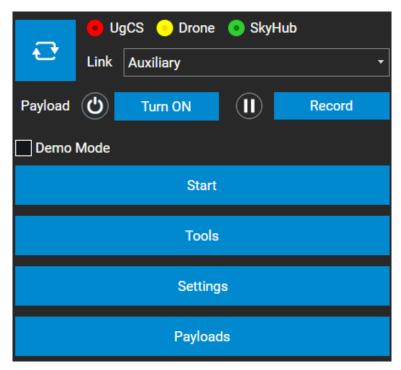


Figure 4.4. Auxiliary link in UgCS-CPM

4.1.2 Establish Auxiliary connection to SkyHub using Ethernet cable

- 1. Connect one end of the Ethernet cable to the RJ45 port on your computer.
- 2. Connect the other end of the Ethernet cable to the SkyHub Ethernet port.

Note SkyHub runs DHCP service onboard, therefore, the PC's IP address will be assigned automatically after connection.

- 3. Open the UgCS-CPM software.
- 4. Press "Settings".
- 5. Verify that the address is set to 10.2.0.1

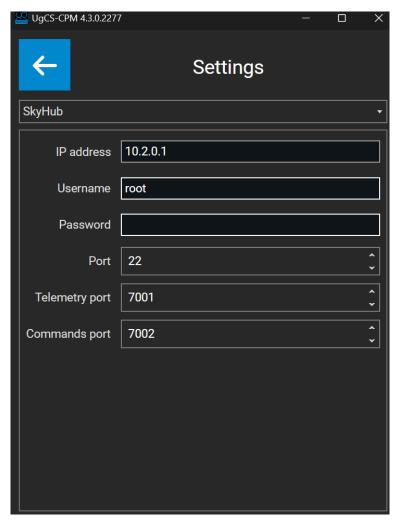


Figure 4.5. Ethernet address within UgCS-CPM

- 6. Press the "back arrow" and refresh the connection list.
- 7. The Auxiliary connection is established.

Warning If your network adapter has manual TCP/IP settings applied, make sure to switch both IP and DNS to "Automatic".

4.1. Prerequisites

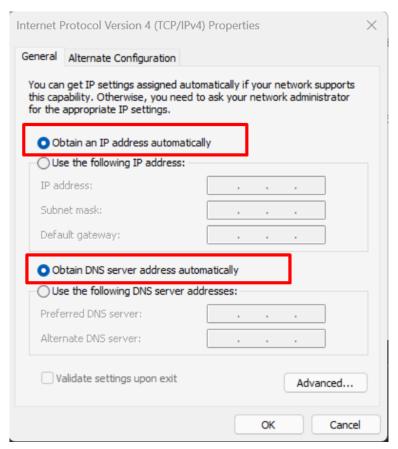


Figure 4.6. Network adapter settings on computer

Assembling

- 1. Attach both mounting kits on the back side of the SkyHub.
- 2. Plug in the drone link cable (Red) to the third connector (Red) on the SkyHub.
- 3. Plug the power cable into either the first or second power port on SkyHub.
- 4. Plug in a USB cable to the DJI PSDK Port on the drone (note that the USB can only be plugged in one direction; use the railing on the connector as guidance).
- 5. Attach the anchor cable to the case of the drone beneath the DJI PSDK port.
- 6. SkyHub assembly on the drone is complete.

Visual instructions on how to mount SkyHub and an altimeter are available in the video below:

Video available at: https://youtu.be/qjouqKcKZfE

You can also watch it directly on YouTube.

5.1 Power-on checks

The cable connecting SkyHub and DJI M350 RTK drones has built-in LED indicators. You can check the connection status by examining them:

Figure 5.1. Numbered LEDs on cable

- LED1 lights up when power is coming from the drone.
- LED2 blinks when there is communication from the drone.
- LED3 blinks when there is communication from SkyHub.

• LED2 lights up fully when the connection is established.

Quick Start: DJI M300/M350 RTK

6.1 Hardware requirements

- DJI M300/M350 RTK drone
- SkyHub V3 (with mounting kit)
- Altimeter (laser or radar)
- Obstacle sensor (optional)

6.2 Software requirements for the Windows PC

- UgCS v5.13.0 or higher (referred to below as UgCS)
- UgCS Custom Payload Monitor v4.3.0 or higher (referred to below as UgCS-CPM)

6.3 Software requirements for the Remote Controller

For DJI M300 users:

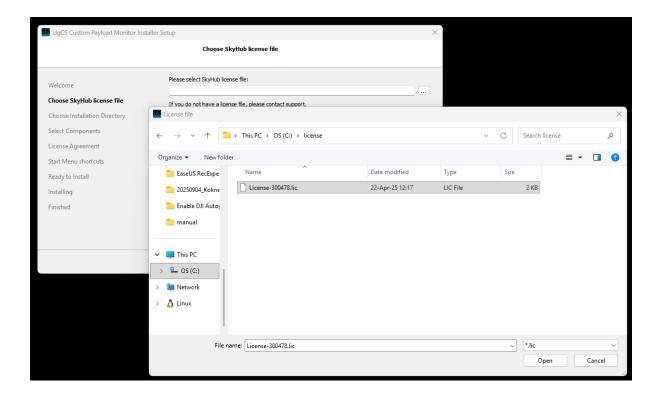
• UgCS Companion for M300 V1.6.3 or later (to establish drone link connection with the CPM)

For DJI M350 users:

- UgCS Companion for M350, M30, M3E V1.6.3 or later (to establish drone link connection with the CPM)
- DJI Pilot 2 (to disable built-in obstacle avoidance sensors and RTK configuration)

6.4 Network requirements

Any Wi-Fi/hotspot to connect the Remote Controller and the Windows PC within a single network.


6.4.1 UgCS desktop download and setup process

- 1. Download the installation package: https://www.sphengineering.com/flight-planning/ugcs-downloads
- 2. Run the setup file.
- 3. Read and acknowledge the license agreement.

- 4. In the component selection tab, you can select additional autopilot support (if necessary).
- 5. Installation complete.

6.4.2 UgCS Custom Payload Monitor download and setup process

- 1. Download the latest available CPM version here: https://www.sphengineering.com/integrated-systems/downloads
- 2. Run the setup file.
- 3. Select the SkyHub license file for the SkyHub you will be using.

- 4. Read and acknowledge the license agreement.
- 5. Installation complete.

Note If you do not have a license file or need a new one, please reach out to us at support@ugcs.com and provide your SkyHub serial number.

6.4.3 SkyHub installation on the drone

Warning Power off the system when connecting cables. To avoid short-circuiting or causing potentially harmful power fluctuations, it is recommended to power off the entire system before performing any cable plug-in or unplugging. Some of the payload sensors used are extremely sensitive to power changes and may be damaged.

6.5 Components

SkyHub assembly kit contains the following components:

- SkyHub onboard computer
- 2x case mounts
- DJI M300/M350 connection cable

6.6 Physical assembly

- 1. Attach both mounting kits on the back side of the SkyHub
- 2. Plug in the drone link cable (Red) to the third connector (Red) on the SkyHub
- 3. Plug the power cable into either the first or second power port on SkyHub

- 4. Plug in a USB cable to the OSDK USB port on the drone (note that the USB can only be plugged in one direction; use the railing on the connector as guidance)
- 5. Attach the anchor cable to the case of the drone beneath the OSDK port.

6. Physical assembly of the SkyHub is complete. Check that all the connectors are secured tightly, with no loose movements.

6.6.1 Altimeter installation on the drone and connection to the SkyHub

To install the altimeter sensor on the DJI M300/M350, use the mountings provided with the sensor.

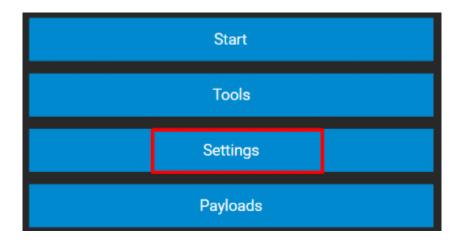
For your convenience, we have a library with 3D models you can download and print yourself in case the default ones are broken or missing: https://files.ugcs.com/s/fMpj5LJpobWeMFi

1. Attach the mountings to the sensor. Note that mounts fit only one way and should slide in easily without too much force being applied. When the mounts are fitted, tighten them with the screws.

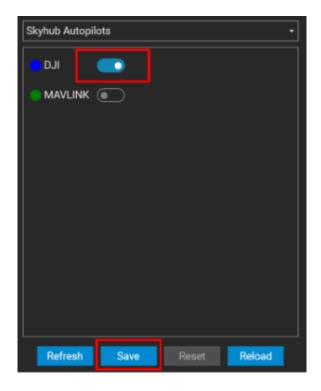
- 2. Install the sensor on the gimbal of your drone. The mounts should slide in deep enough to be tightly secured on the gimbal, without loose movement.
- 3. Connect the cable to Connector 1 (yellow) on the SkyHub

4. Setup is complete. You can now proceed with the widget configuration.

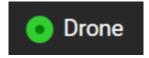
6.6.2 Altimeter / Autopilot configuration within the CPM software


Before proceeding further, power on both the drone and remote controller. Then, make sure that your computer and the controller are connected to the same network. This is required to establish the drone link connection between CPM on your computer and SkyHub on the drone.

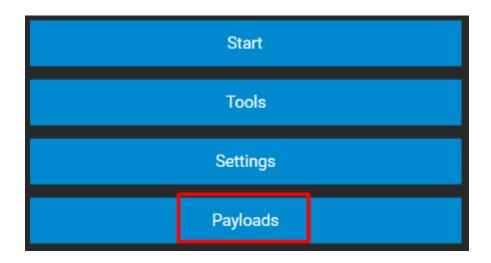
Note SkyHub will take a little more time to fully boot up. You can check whether it is ready by the indicator within CPM. As soon as the SkyHub indicator becomes green, you can proceed with the configuration.

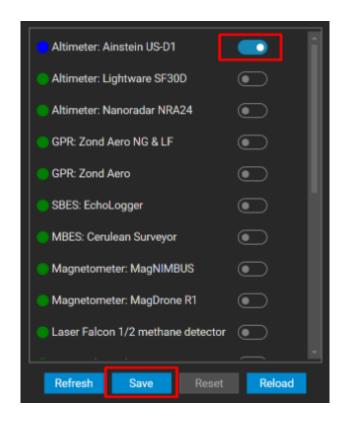


6.7 Enabling the autopilot

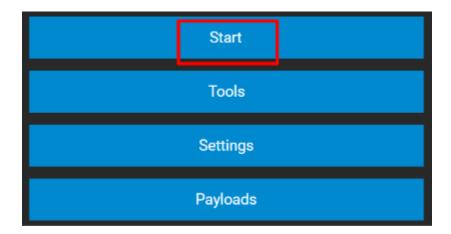

1. Press the Settings button

- 2. From the drop-down list, select the SkyHub Autopilots section
- 3. Enable DJI (note that only one autopilot can be enabled at a time; MAVLINK should stay disabled). Press Save and perform a system restart

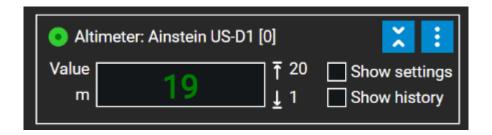

Autopilot configuration is complete. After the system restart, you will notice that the drone link icon should become green.


6.8 Enabling the altimeter

When both drone link and SkyHub connections are established, you can proceed with the altimeter widget configuration.


1. Click on the Payloads section

2. From the payload list, search for your altimeter model (in our example, it is US-D1), enable it, and press the Save button. Perform a system restart.


3. After the restart is complete, press the Start button.

4. From the drop-down list, select the altimeter model you enabled previously and press the "plus" icon

Widget configuration is complete. If everything was set up correctly, you should see the initial readings from the sensor.

Quick Start: ArduPilot

7.1 Hardware requirements

- SkyHub v3 device.
- Drone running ArduPilot flight controller with firmware 4.* or higher.
- Mounting parts to install SkyHub.
- SkyHub3 cable for Pixhawk autopilot or cable provided by drone manufacturer to connect SkyHub with autopilot.
- Power output (according to SkyHub required input power).

7.2 Software requirements for the Windows PC

- UgCS v5.13.0 or higher (referred to below as UgCS)
- UgCS Custom Payload Monitor v4.3.0 or higher (referred to below as UgCS-CPM)
- MissionPlanner for ArduPilot configuration.
- WinSCP (optional) to access SkyHub file system for advanced configuration.

7.2.1 UgCS desktop download and setup process

- 1. Download the installation package: https://www.sphengineering.com/flight-planning/ugcs-downloads
- 2. Run the setup file.
- 3. Read and acknowledge the license agreement.
- 4. In the component selection tab, select ArduPilot to install necessary autopilot compatibility.

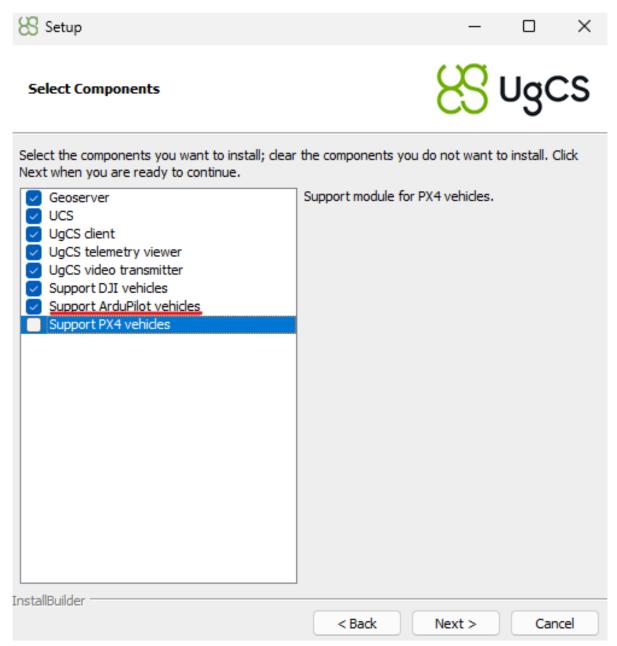
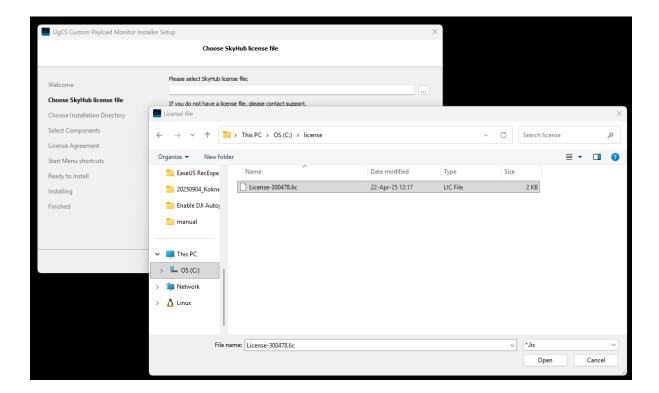



Figure 7.1. ArduPilot compatibility in UgCS setup

5. Installation complete.

7.2.2 UgCS Custom Payload Monitor download and setup process

- 1. Download the latest available CPM version here: https://www.sphengineering.com/integrated-systems/downloads
- 2. Run the setup file.
- 3. Select the SkyHub license file for the SkyHub you will be using.

- 4. Read and acknowledge the license agreement.
- 5. Installation complete.

Note If you do not have a license file or need a new one, please reach out to us at support@ugcs.com and provide your SkyHub serial number.

7.2.3 SkyHub installation on the drone

7.3 Physical setup

Warning Power off the system when connecting cables. To avoid short-circuiting or causing potentially harmful power fluctuations, it is recommended to power off the entire system before performing any cable plug-in or unplugging. Some of the payload sensors used are extremely sensitive to power changes and may be damaged.

- 1. Mount SkyHub on the drone in a safe, fixed position.
- 2. Connect SkyHub Connector #3 (red) to the flight controller using the SkyHub 3 cable for Pixhawk autopilot (or cable provided by drone manufacturer).
- 3. Connect SkyHub to a power source.

7.4 UgCS configuration

1. Make sure UgCS version 5.10.2 or higher is used (download links can be found in Prerequisites section) and VSM for ArduPilot vehicles is installed.

7.3. Physical setup 33

2. Configure UgCS ArduPilot VSM. Open vsm-ardupilot.conf in a text editor with administrator privileges. The file is located in the UgCS installation folder (default path C:Program Files (x86)UgCSbin). Find, uncomment, and adjust the following settings if needed.

```
*C\Program Files (x86)\UgCS\bin\vsm-ardupilot.conf - Notepad++ [Administrator]
log 🖾 📔 ri hri 🖾 🔠 vsm-ardupilot conf 🖸
     # Mavlink protocol version used by VSM.
    # Default : 1
mavlink.protocol_version = 2
    # Vehicle detection timeout. On new connection VSM will wait this long for data from the vehicle.
     tvehicle.detection timeout = 10
    # Rnable communication with onboard computer with custom payload functionality
# yes - communication is enabled. In this case onboard computer's system id and component id must be configured.
195 evehicle.ardupilot.custom payload.enable = yes

    MAVLINK system id of onboard computer with custom payload functionality.
    Range: 1 - 255
    webicle.ardupilot.custom_payload.onboard.system_id = 2

     # MAVLINK component id of onboard computer with custom payload functionality.
# Range: 1 - 255
   # Range: 1 - 255
Ovehicle.ardupilot.custom_payload.onboard.component_id = 5
    # MAVLINK network of onboard computer with custom payload functionality.
     # Range: 0 - 255
# Default: 0
   vehicle, ardupilot, custon payload, onboard, network = 0
                                        length: 9,141 lines: 214
                                                             Ln: 205 Col: 17 Pos: 8,780
                                                                                                        Windows (CR LF) UTF-8
```

Figure 7.2. ArduPilot VSM configuration

- 1. Establish Auxiliary connection between UgCS-CPM and SkyHub. See Preparation guide for instructions.
- 2. When Auxiliary link is established, you should select it from the Link menu in UgCS-CPM.

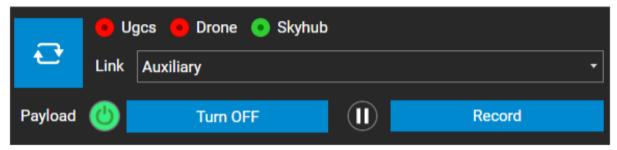


Figure 7.3. Auxiliary Link settings in UgCS-CPM

Note The following functionalities are available when SkyHub is connected via the Auxiliary link:

- Widget configuration in UgCS-CPM.
- Data from payload in widgets.
- Data download from SkyHub.
- Firmware upgrade.
- SkyHub configuration.
- 5. ArduPilot configuration for SkyHub On the autopilot, it is necessary to configure the serial port to which

SkyHub will be connected.

Parameters:

SERIALx_BAUD 230400 SERIALx_PROTOCOL 2 MAVLink2

6. Enabling MAVLink autopilot on SkyHub

In CPM, press the Settings button, choose SkyHub Autopilots from the menu and enable MAVLink. Press Save and choose to reload the system to apply changes.

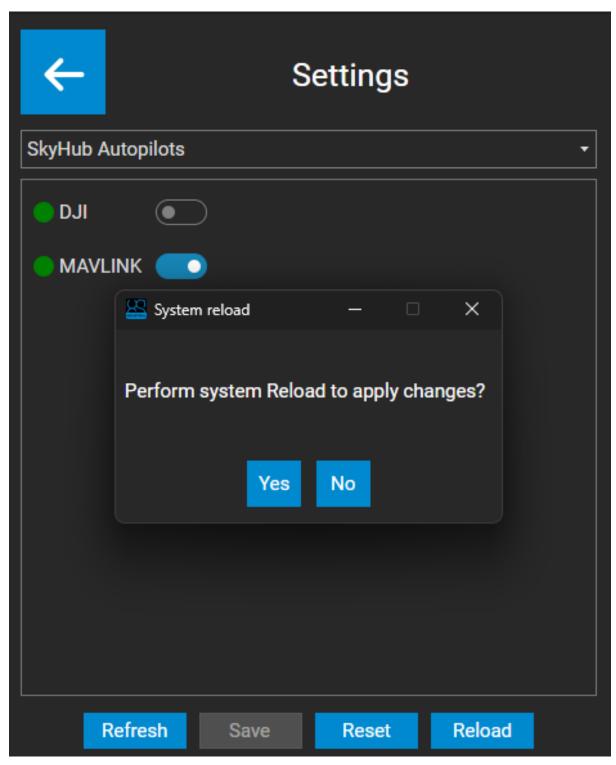


Figure 7.4. Enabling MAVlink in UgCS-CPM

If the configuration on the autopilot matches the default settings on SkyHub, the drone connection indicator in UgCS-CPM must turn green.

7. Verify connection on ArduPilot using Mission Planner. In Mission Planner, open Setup -> Advanced -> MAVLink inspector.

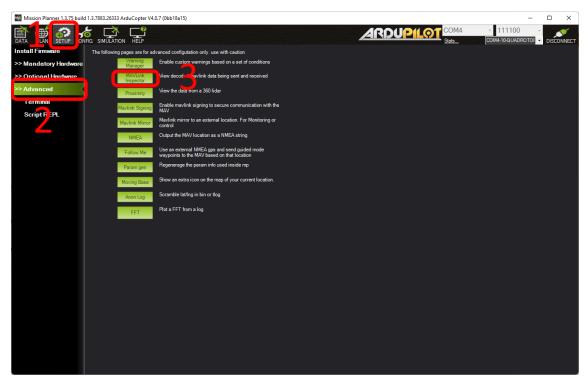


Figure 7.5. Mission Planner MAVlink inspector

8. In case of correct connection and configuration, the MAVLink inspector shows communication between SkyHub and the autopilot.



Figure 7.6. Mission Planner MAVlink inspector data

Vehicle 2 and Comp 5 correspond to the configured SkyHub System (2) and Component (5) ID.

9. In case of correct autopilot, UgCS, and SkyHub configuration, Payload data b64 is displayed in the drone telemetry in UgCS.

Quick Start: PX4

Note SkyHub does not support True Terrain following with PX4. SkyHub works only as data logger for payload sensor using position data from PX4 autopilot.

Connection with SkyHub during the flight can be established only if UgCS desktop is used as ground control software.

8.1 Hardware requirements

- SkyHub v3 device.
- Drone running PX4 flight controller with firmware version 1.7+
- Mounting parts to install SkyHub.
- SkyHub3 cable for Pixhawk autopilot or cable provided by drone manufacturer to connect SkyHub with autopilot.
- Power output (according to SkyHub required input power).

8.2 Software requirements for the Windows PC

- UgCS v5.13.0 or higher (referred to below as **UgCS**)
- UgCS Custom Payload Monitor v4.3.0 or higher (referred to below as UgCS-CPM)
- QGroundControl for the PX4 configuration.
- WinSCP (optional) to access SkyHub file system for advanced configuration.

8.2.1 UgCS desktop download and setup process

- 1. Download the installation package: https://www.sphengineering.com/flight-planning/ugcs-downloads
- 2. Run the setup file.
- 3. Read and acknowledge the license agreement.
- 4. In the component selection tab, select ArduPilot to install necessary autopilot compatibility.

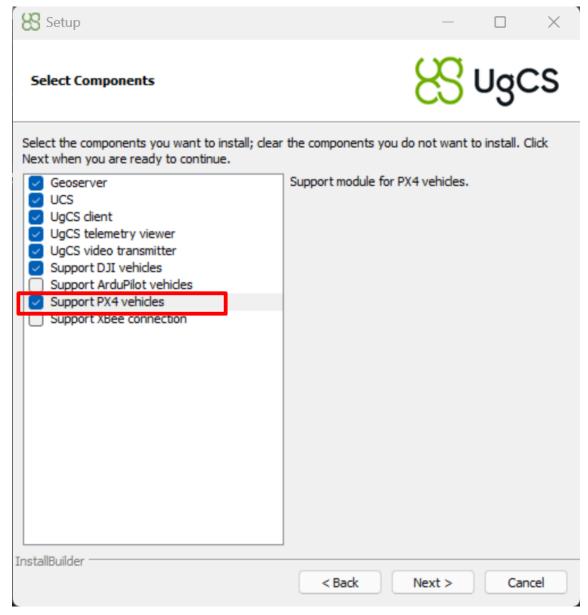
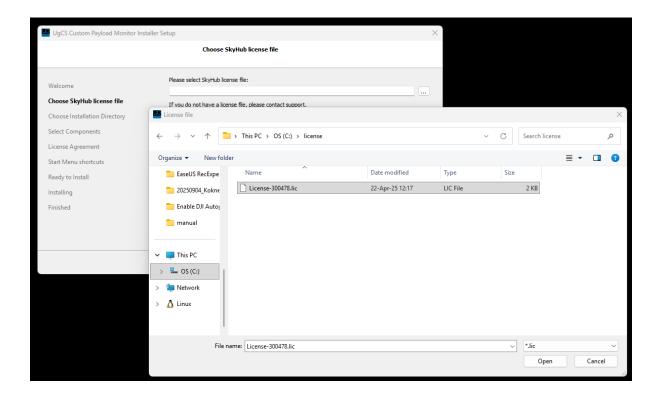



Figure 8.1. PX4 VSM in UgCS setup

5. Installation complete.

8.2.2 UgCS Custom Payload Monitor download and setup process

- Download the latest available CPM version here: https://www.sphengineering.com/integrated-systems/downloads
- 2. Run the setup file.
- 3. Select the SkyHub license file for the SkyHub you will be using.

- 4. Read and acknowledge the license agreement.
- 5. Installation complete.

Note If you do not have a license file or need a new one, please reach out to us at support@ugcs.com and provide your SkyHub serial number.

8.2.3 SkyHub installation on the drone

8.3 Physical setup

Warning Power off the system when connecting cables. To avoid short-circuiting or causing potentially harmful power fluctuations, it is recommended to power off the entire system before performing any cable plug-in or unplugging. Some of the payload sensors used are extremely sensitive to power changes and may be damaged.

- 1. Mount SkyHub on the drone in a safe, fixed position.
- 2. Connect SkyHub Connector #3 (red) to the flight controller using the SkyHub 3 cable for Pixhawk autopilot.
- 3. Connect SkyHub to a power source.

8.4 Autopilot configuration

1. Make sure UgCS version 5.13 or higher is used (download links can be found in Prerequisites section) and VSM for PX4 vehicles is installed.

8.3. Physical setup 41

- 2. Establish Auxiliary connection between UgCS-CPM and SkyHub. See Preparation guide for instructions.
- 3. When Auxiliary link is established, you should select it from the Link menu in UgCS-CPM.

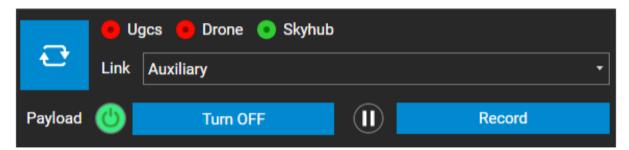


Figure 8.2. Auxiliary Link settings in UgCS-CPM

Note The following functionalities are available when SkyHub is connected via the Auxiliary link:

- Widget configuration in UgCS-CPM.
- Data from payload in widgets.
- Data download from SkyHub.
- Firmware upgrade.
- SkyHub configuration.
- 4. Enable MAVLink autopilot on SkyHub.

In UgCS-CPM, press the "Settings" button, choose "SkyHub Autopilots" from the menu and enable "MAVLink". Press Save and choose to reload the system to apply changes.

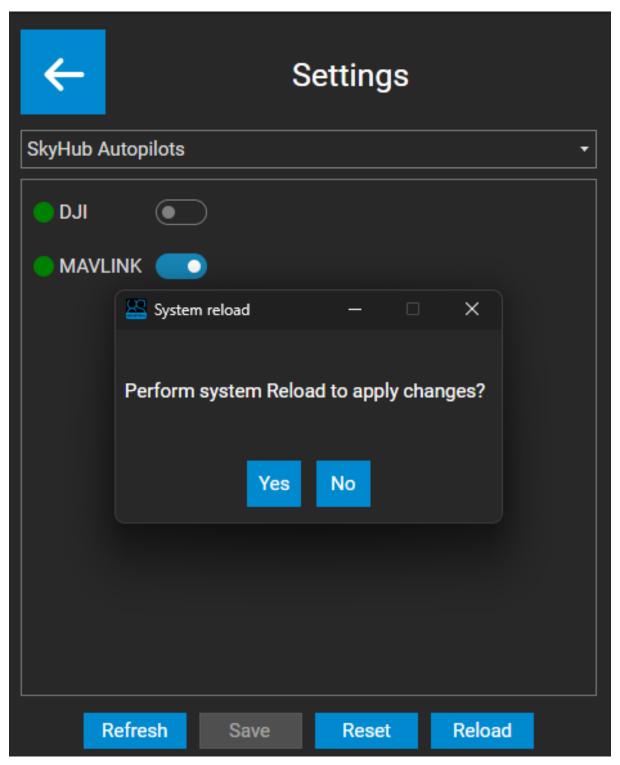


Figure 8.3. Enabling MAVlink in UgCS-CPM

- 6. Restart SkyHub.
- 7. Make sure that the UgCS PX4 VSM parameter vehicle.px4.custom_payload.onboard.component_id is equal to the Component ID value in the MAVLink settings within the UgCS-CPM.
- 8. Make sure that the V2 Extension parameter is enabled.

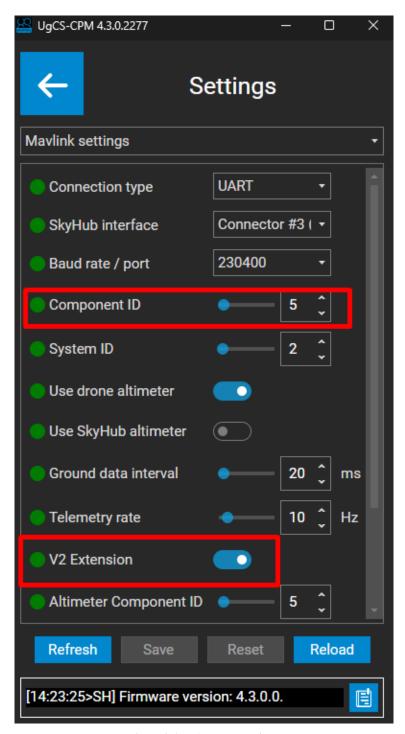


Figure 8.4. MAVLINK settings

9. If SkyHub is connected to telemetry port 2, open the QGroundControl application, then go to Parameters -> MAVLink and set the parameter MAV_1_CONFIG to TELEM2.

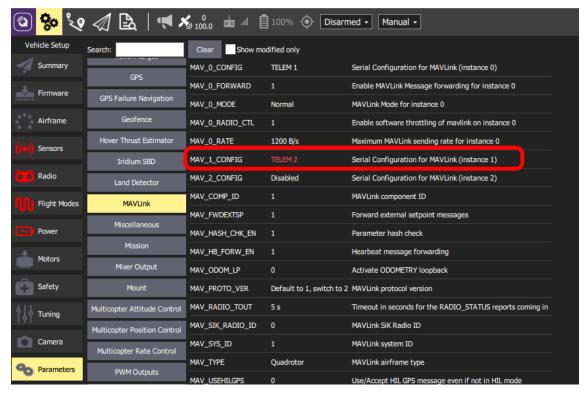


Figure 8.5. SkyHub PX4 TELEM2 port configuration

- 10. Restart the autopilot.
- 11. After restart, data forwarding for TELEM2 autopilot telemetry ports should be enabled. Set the parameter MAV_1_FORWARD to 1.

Figure 8.6. SkyHub PX4 TELEM2 port data forwarding configuration

12. Change the baud rate for the TELEM2 Serial Port (recommended 230400). Speed should be the same as configured on the SkyHub side in the MAVLink settings within the UgCS-CPM.

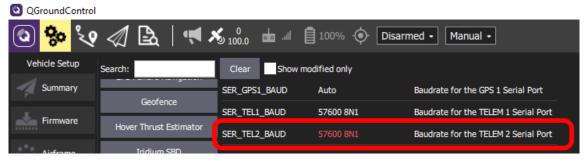
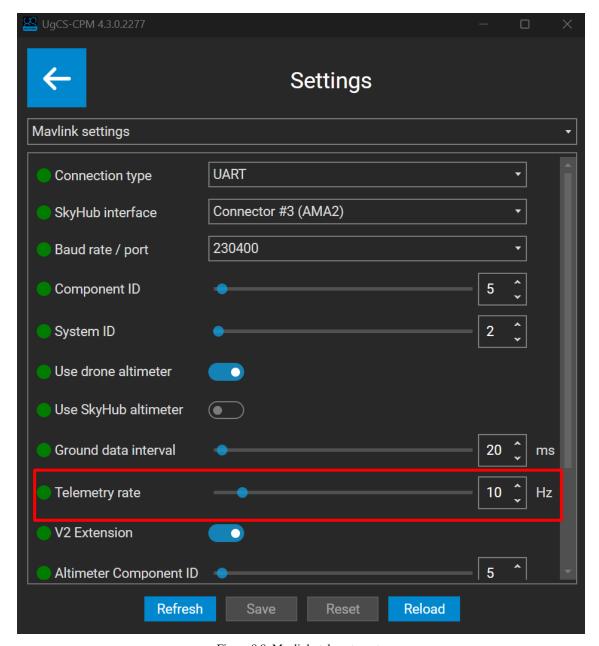


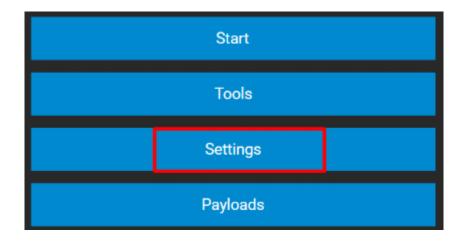
Figure 8.7. SkyHub PX4 TELEM2 port baudrate configuration

Note SkyHub subscribes to the following MAVLink messages with telemetry rate defined by the Telemetry

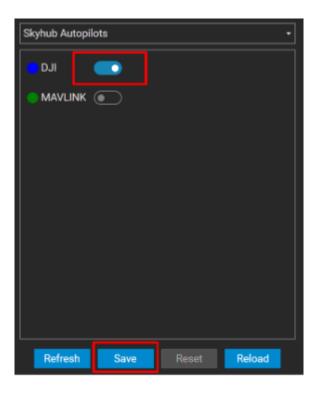
rate parameter in the MAVLink settings within the UgCS-CPM:

GPS2_RAW; GPS_RAW_INT; GLOBAL_POSITION_INT; ATTITUDE; SYSTEM_TIME; HEARTBEAT; DISTANCE_SENSOR

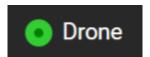



Figure 8.8. Mavlink telemetry rate

Setup Interface to DJI Autopilot M300 / M350


Note Before the autopilot configuration, Auxiliary or drone link connection must be established between the remote controller and UgCS-CPM software on your computer.

9.1 Enabling the autopilot


1. Press the Settings button.

- 2. From the drop-down list, select the SkyHub Autopilots section.
- 3. Enable DJI (note that only one autopilot can be enabled at a time; MAVLINK should stay disabled). Press Save and perform a system restart

Autopilot configuration is complete. After the system restart, you will notice that the drone link icon should become green.

9.2 DJI Obstacle Sensors Disabling

Depending on the payload used, downward obstacle sensors may need to be disabled on DJI M300 / M350. Use DJI Pilot to disable them according to the screenshots below.

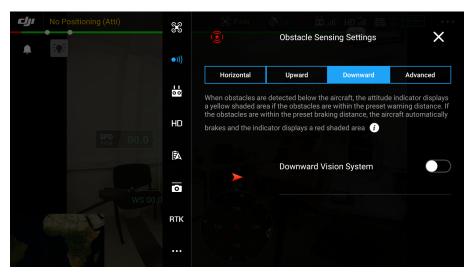


Figure 9.1. M300 / M350 RTK DJI Pilot screens

9.3 UgCS Companion on DJI remote controller

Note To establish the drone link connection between the UgCS-CPM on your computer and SkyHub on the drone, both Companion (on your remote controller) and UgCS software (on your computer) must be open.

Companion application is available for download here: SkyHub download page.

UgCS Companion application establishes connection with SkyHub automatically if the DJI driver is enabled. The SkyHub indicator in the upper left corner of the application turns green if the connection is established.

If there is more than one computer with UgCS used in the network, tap on the UgCS indicator in the upper left corner of the UgCS Companion application to access the list of available UgCS instances and select the necessary one.

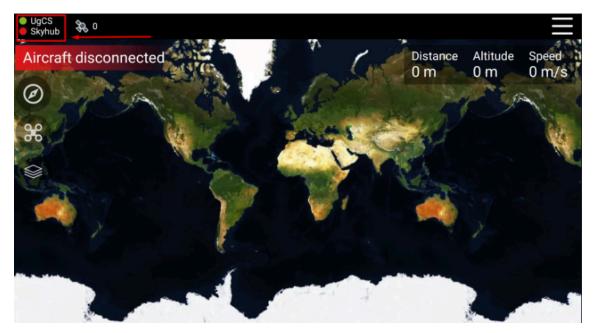


Figure 9.2. UgCS Companion server selection button

Attention: If the UgCS Companion application was started before SkyHub is fully powered on, the application will not detect SkyHub. An application restart will be necessary to establish the connection.

Figure 9.3. UgCS Companion SkyHub and UgCS status

Setup Interface to ArduPilot

SkyHub can be connected to the flight controller flashed with the ArduPilot 4.x.x firmware.

1. Make sure UgCS version 4.3 or higher is used (download links can be found in Preparation section) and VSM for ArduPilot vehicles is installed.

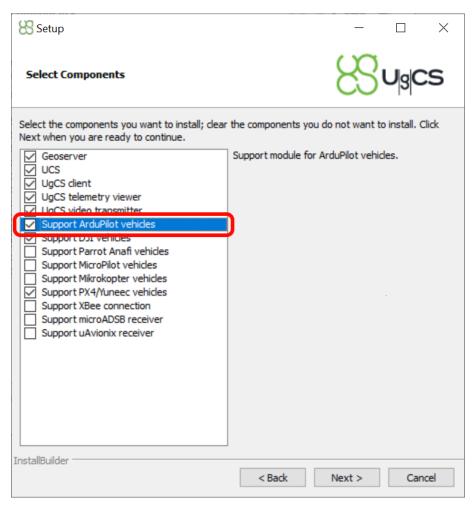


Figure 10.1. UgCS installation Support for ArduPilot vehicles

2. Configure UgCS ArduPilot VSM. Open vsm-ardupilot.conf in a text editor with administrator privileges. The file is located in the UgCS installation folder (default path C:\Program Files (x86)\UgCS\bin). Find, uncomment, and adjust the following settings if needed.

```
*C:\Program Files (x86)\UgCS\bin\vsm-ardupilot.conf - Notepad++ [Administrator]
                                                                                                                                                                Eile Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ?
🔚 change.log 🗵 📙 ni.txt 🗵 블 vsm-ardupilot.conf 🗵
     # Mavlink protocol version used by VSM.

# Range: 1, 2, auto

# 1 - Always use mavlink1 for outgoing messages.

# 2 - Always use mavlink2 for outgoing messages.

# auto - Detect autopilot capabilities and use mavlink2 if autopilot reports MAV_PROTOCOL_CAPABILITY_MAVLINK2.

# Default : 1
    mavlink.protocol_version = 2
     # Vehicle detection timeout. On new connection VSM will wait this long for data from the vehicle.
      # Range: 1..100
# Default: 6
     #vehicle.detection_timeout = 10
     # Enable communication with onboard computer with custom payload functionality
# yes - communication is enabled. In this case onboard computer's system id and component id must be configured.
       # yes - commun
# Default: no
    ovehicle.ardupilot.custom_payload.enable = yes
     # MAVLINK system id of onboard computer with custom payload functionality.
# Range: 1 - 255
   8 # Range: 1 - 255
9 vehicle.ardupilot.custom_payload.onboard.system_id = 2
      # MAVLINK component id of onboard computer with custom payload functionality. # Range: 1 - 255
    # Range: 1 - 255

vehicle.ardupilot.custom_payload.onboard.component_id = 5
      # MAVLINK network of onboard computer with custom payload functionality.
    # Range: 0 - 255
# Default: 0

•vehicle.ardupilot.custom_payload.onboard.network = 0
Normal text file
                                                  length: 9,141 lines: 214
                                                                                      Ln: 206 Col: 17 Pos: 8,780
                                                                                                                                 Windows (CR LF) UTF-8
```

Figure 10.2. ArduPilot VSM configuration file

- 3. Connect the SkyHub to the drone and power on the system.
- 4. Launch the UgCS-CPM software on your computer.
- 5. Navigate to "Settings", from the drop-down list select "SkyHub Autopilots" and enable "MAVLINK".

Note Only one autopilot may be enabled at a time. In this case, DJI should be disabled.

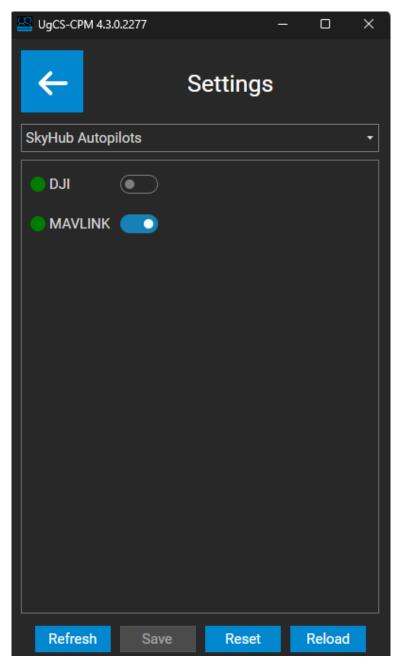


Figure 10.3. MAVLINK autopilot

- 6. Restart the system.
- 7. After the connection is reestablished, launch the UgCS-CPM and navigate to "Settings" and from the drop-down list select "MAVLink settings".
- 9. Make sure that the V2 Extension parameter is enabled.

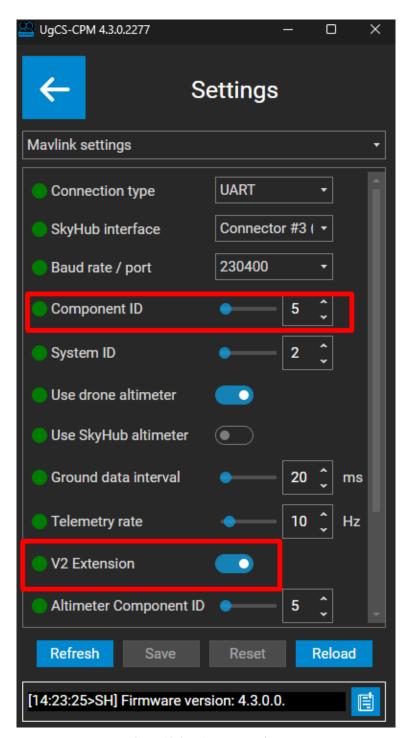


Figure 10.4. MAVLINK settings

- 10. Open the Mission Planner application, connect it to the vehicle autopilot and check the serial port settings used for SkyHub communication. Check the port configured baud rate. Speed should be the same as configured in the MAVLink settings within the UgCS-CPM (recommended 230400). If adjustment is needed, don't forget to write them and restart the autopilot.
- 11. Check communication between SkyHub and the autopilot. Using Mission Planner, open Setup -> Advanced -> MAVLink inspector.

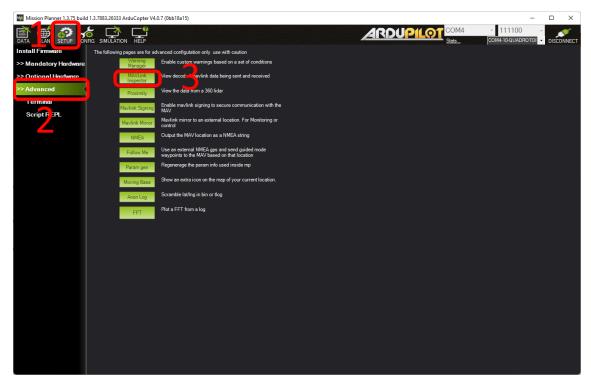


Figure 10.5. Mission Planner MAVlink inspector

12. In case of correct connection and configuration, the MAVLink inspector shows communication between SkyHub and the autopilot.

Figure 10.6. Mission Planner MAVlink inspector data

Note Vehicle 2 and Comp 5 correspond to System ID (2) and Component ID (5) fields in the MAVLink settings (UgCS-CPM).

13. In case of correct autopilot, UgCS and CPM configuration, *Payload data b64* is displayed in the drone telemetry in UgCS.

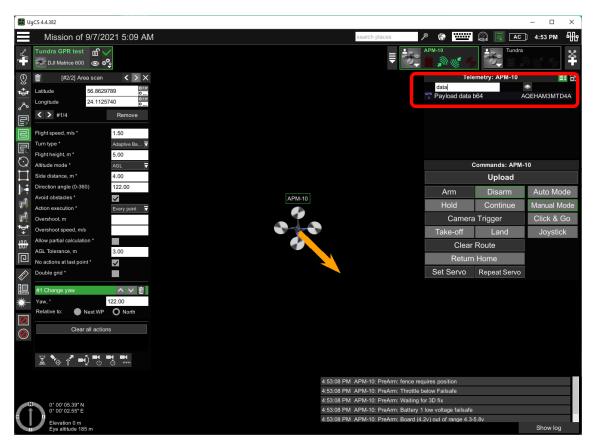


Figure 10.7. UgCS, drone telemetry

Setup Interface to PX4

SkyHub can be connected to the flight controller flashed with the PX4 1.10.x or higher firmware.

1. Make sure UgCS version 4.3 or higher is used (download links can be found in Preparation section) and VSM for PX4 vehicles is installed.

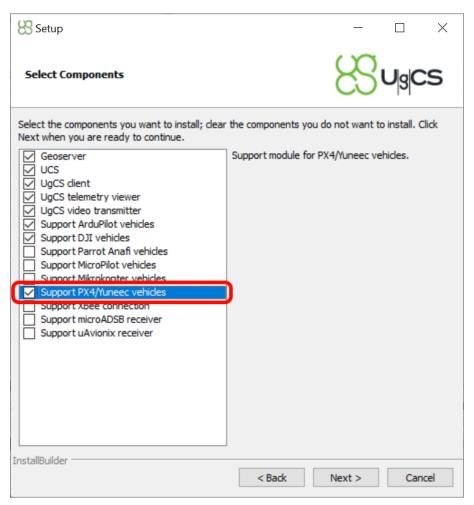


Figure 11.1. UgCS installation Support for PX4 based vehicles

2. Configure UgCS PX4 VSM. Open vsm-px4.conf in a text editor with administrator privileges. The file is located in the UgCS installation folder (default path C:\Program Files (x86)\UgCS\bin). Find, uncomment, and adjust the following settings if needed.

```
C:\Program Files (x86)\UgCS\bin\vsm-px4.conf - Notepad++ [Administrator]
                                                                                                                                                   ×
Ele Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ?
vsm-px4.conf
     #vehicle.px4.telemetry_rate.VFR_HUD = 0.5
 110 # Mavlink protocol version.
     # Supported values:

# 1 : Always use mavlink version 1

# 2 : Always use mavlink version 2

# auto : Use mavlink 2 if autopilot reports mavlink2 capability
      # Default: auto
  16 vehicle.px4.mavlink_protocol_version = 2
     # Set heading to next waypoint when heding is not specified for reout waypoint.
 # no - do not use automatically calculated heading between waypoints. This disables override of parameter MIS_YAWMOI

# yes - force heading towards next waypoint when heading is not set in route. When set, each mission upload sets MIS

# Default: yes
     #vehicle.px4.autoheading = no
 # Vehicle detection timeout. On new connection VSM will wait this long for data from the vehicle.
 125 # Range: 1..100
126 # Default: 6
  27 #vehicle.detection_timeout = 10
 # Enable communication with onboard computer with custom payload functionality
# yes - communication is enabled. In this case onboard computer's system id and component id must be configured.
      # Default: no
  32 vehicle.px4.custom_payload.enable = yes
  34 # MAVLINK system id of onboard computer with custom payload functionality.
  36 vehicle.px4.custom_payload.onboard.system_id = 2
  # MAVLINK component id of onboard computer with custom payload functionality.
# Range: 1 - 255
  40 vehicle.px4.custom payload.onboard.component id = 5
  42 # MAVLINK network of onboard computer with custom payload functionality.
 # Range: 0 - 255
 145 vehicle.px4.custom_payload.onboard.network = 0
                                                                                                                           Windows (CR LF) UTF-8
                                                                                         Ln:40 Col:2 Pos:1,450
Normal text file
                                                             length: 5,937 lines: 146
```

Figure 11.2. PX4 VSM configuration file

- 3. Connect the SkyHub to the drone and power on the system.
- 4. Launch the UgCS-CPM software on your computer.
- 5. Navigate to "Settings", from the drop-down list select "SkyHub Autopilots" and enable "MAVLINK".

Note Only one autopilot may be enabled at a time. In this case, DJI should be disabled.

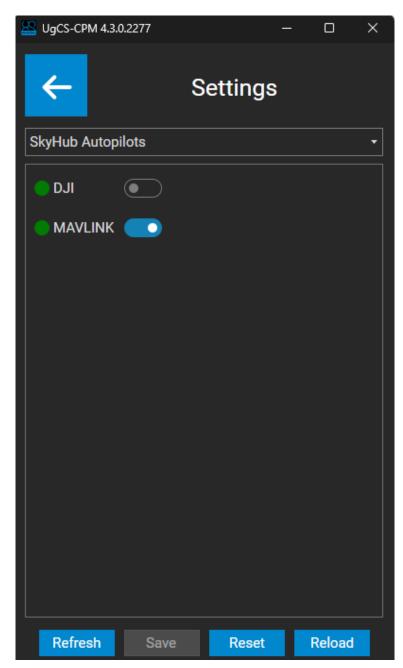


Figure 11.3. MAVLINK autopilot

- 6. Restart SkyHub.
- 7. Make sure that the UgCS PX4 VSM parameter vehicle.px4.custom_payload.onboard.component_id is equal to the Component ID value in the MAVLink settings within the UgCS-CPM.
- 8. Make sure that the V2 Extension parameter is enabled.

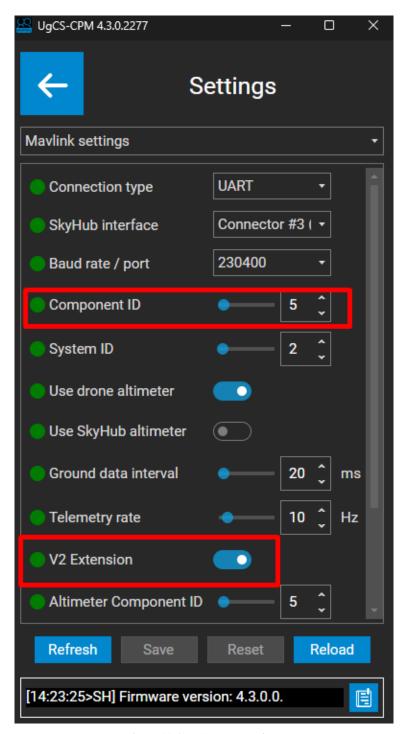


Figure 11.4. MAVLINK settings

9. If SkyHub is connected to telemetry port 2, open the QGroundControl application, then go to Parameters -> MAVLink and set the parameter MAV_1_CONFIG to TELEM2.

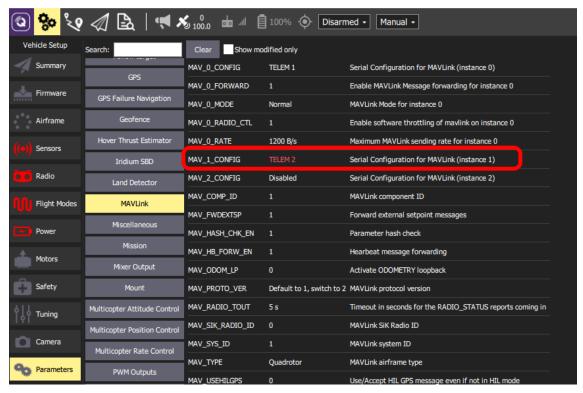


Figure 11.5. SkyHub PX4 TELEM2 port configuration

- 10. Restart the autopilot.
- 11. After restart, data forwarding for TELEM2 autopilot telemetry ports should be enabled. Set the parameter MAV_1_FORWARD to 1.

Figure 11.6. SkyHub PX4 TELEM2 port data forwarding configuration

12. Change the baud rate for the TELEM2 Serial Port (recommended *230400*). Speed should be the same as configured on the SkyHub side in the MAVLink settings within the UgCS-CPM.

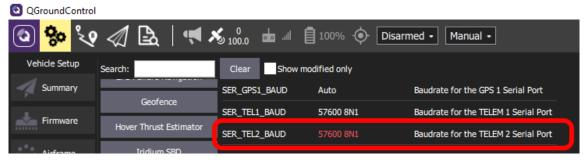


Figure 11.7. SkyHub PX4 TELEM2 port baudrate configuration

Note SkyHub subscribes to the following MAVLink messages with telemetry rate defined by the Telemetry

rate parameter in the MAVLink settings within the UgCS-CPM:

GPS2_RAW; GPS_RAW_INT; GLOBAL_POSITION_INT; ATTITUDE; SYSTEM_TIME; HEARTBEAT; DISTANCE_SENSOR

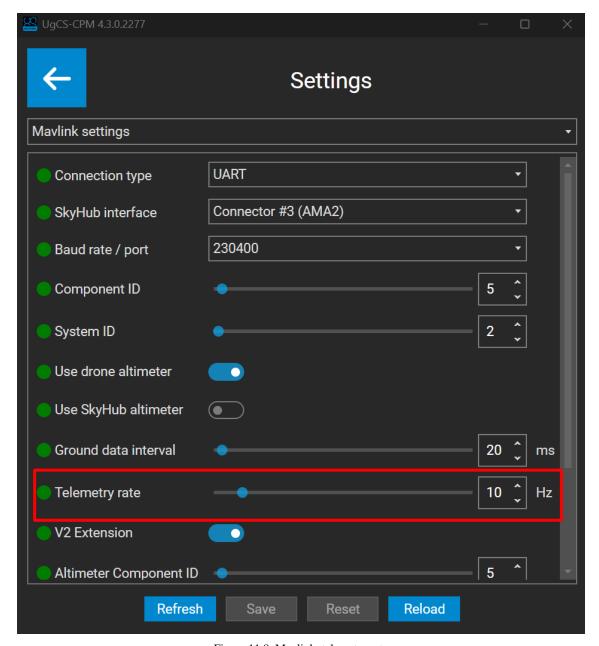


Figure 11.8. Mavlink telemetry rate

Ainstein US-D1 Altimeter

Note The Sensor may be connected/disconnected only when the system is powered off.

- Attach the altimeter to the drone using the mountings provided with the sensor.
- Connect the cable to SkyHub Connector #1 (yellow).

Power on the system.

- Establish either the drone link or auxiliary connection with the SkyHub in the UgCS-CPM software.
- On the main screen of the UgCS-CPM, click on the "Payloads" button.
- From the available payload list, enable the "Altimeter Ainstein US-D1".
- Press the "Save" button and confirm system reload.

Wait until the reload process is finished and the connection to the SkyHub is reestablished.

- On the main screen of the UgCS-CPM, click the "Start" button.
- From the drop-down widget list, select the "Altimeter Ainstein US-D1" and press the blue "plus" button.
- To access the configuration menu, press on the "three-dot" icon on the upper right corner of the widget and select "Settings".

12.1 Ainstein US-D1 Altimeter Configuration Parameters

Parameter	Default	Min	Max	Precision	Unit	Options	Description
Safe altitude	5	0.1	50	0.1	m		Safe altitude drone will take in case of failsafe or at the end of the route
Baud rate	115200				bps	57600, 115200, 230400	Connection port baud rate, 115200 recommended by manufacturer
Serial device	Connector #1 (AMA1)					Connector #1 (AMA1), Connector #2 (S0), Connector #4 (AMA3)	SkyHub connector number where sensor is connected
Payload Id	218	192	220	1			Payload Id

Lightware SF30/D Altimeter

Note The Sensor may be connected/disconnected only when the system is powered off.

- Attach the altimeter to the drone using the mountings provided with the sensor.
- Connect the cable to SkyHub Connector #1 (yellow).

Power on the system.

- Establish either the drone link or auxiliary connection with the SkyHub in the UgCS-CPM software.
- On the main screen of the UgCS-CPM, click on the "Payloads" button.
- From the available payload list, enable the "Altimeter Lightware SF30D".
- Press the "Save" button and confirm system reload.

Wait until the reload process is finished and the connection to the SkyHub is reestablished.

- On the main screen of the UgCS-CPM, click the "Start" button.
- From the drop-down widget list, select the "Altimeter Lightware SF30D" and press the blue "plus" button.
- To access the configuration menu, press on the "three-dot" icon on the upper right corner of the widget and select "Settings".

13.1 Lightware SF30/D Altimeter Configuration Parameters

Parameter	Default	Min	Max	Precision	Unit	Options	Description
Safe altitude	5	0.1	50	0.1	m		Safe altitude drone will take in case of failsafe or at the end of the route
Extended CSV log	False						Create extended CSV log
Is filtered	True						Use software filter for averaging values
Rate Hz	39				Hz	39, 78, 156, 312, 625, 1250, 2501, 5002, 10005, 20010	Number of measurements per second

Return mode	LAST					FIRST, LAST	Which response to publish as an altitude value
Baud rate	115200				bps	57600, 115200, 230400	Connection port baud rate, 115200 recommended by manufacturer
Serial device	Connector #1 (AMA1)					Connector #1 (AMA1), Connector #2 (S0), Connector #4 (AMA3)	SkyHub connector number where altimeter is connected
Payload Id	220	192	220	1			Payload Id

Nanoradar NRA24 Altimeter

Note The Sensor may be connected/disconnected only when the system is powered off.

- Attach the altimeter to the drone using the mountings provided with the sensor.
- Connect the cable to SkyHub Connector #1 (yellow).

Power on the system.

- Establish either the drone link or auxiliary connection with the SkyHub in the UgCS-CPM software.
- On the main screen of the UgCS-CPM, click on the "Payloads" button.
- From the available payload list, enable the "Altimeter Nanoradar NRA24".
- Press the "Save" button and confirm system reload.

Wait until the reload process is finished and the connection to the SkyHub is reestablished.

- On the main screen of the UgCS-CPM, click the "Start" button.
- From the drop-down widget list, select the "Altimeter Nanoradar NRA24" and press the blue "plus" button.
- To access the configuration menu, press on the "three-dot" icon on the upper right corner of the widget and select "Settings".

14.1 Altimeter Nanoradar NRA24 Altimeter Configuration Parameters

Parameter	Default	Min	Max	Precision	Unit	Options	Description
							Safe altitude drone
Safe altitude	5	0.1	50	0.1	m		will take in case of
Saic attitude	3	0.1	30	0.1	111		failsafe or at
							the end of the route
							Use software filter
Is filtered	False						for averaging
							values
							Averaging factor.
							Larger value will
Averaging factor	2					1, 2, 4, 8, 16,	make flight
Averaging factor						32	smoother but less
							accurate to eleva-
							tion changes.

Baud rate	115200				bps	57600, 115200, 230400	Connection port baud rate, 115200 recommended by manufacturer
Serial device	Connector #1 (AMA1)					Connector #1 (AMA1), Connector #2 (S0), Connector #4 (AMA3)	SkyHub connector number where altimeter is connected
Payload Id	219	192	220	1			Payload Id

Zond Aero NG & LF

Note The GPR power cable may be connected/disconnected only when the system is powered off.

- Connect the GPR power cable to SkyHub Power output port #7.
- Connect the GPR Ethernet cable to SkyHub Ethernet port #10.

Power on the system.

- Establish connection with SkyHub in UgCS-CPM.
- Open the Payloads list.
- Enable the GPR driver in the UgCS-CPM Payloads interface.
- GPR: Zond Aero NG & LF

Press "Save" in the Payloads interface and confirm system reload.

- Navigate to the main screen, press "Start" and add the GPR widget from the list.
- Access full configuration from Settings.

Note It is possible to configure GPR using Prism2 software when the GPR is connected to SkyHub. It is necessary to establish a connection with SkyHub over Wi-Fi and ensure that UgCS-CPM is closed before starting configuration in Prism2.

15.1 Zond Aero NG & LF Configuration Parameters

Parameter	Default	Min	Max	Precision	Unit	Options	Description
Pulse delay	174	0	2000	1			Pulse delay should be set up during the calibration in Prism2.

	T			T	1	0.010 (#6)	
Time range per sample	0.071 ns (#2)					0.018 ns (#0), 0.036 ns (#1), 0.071 ns (#2), 0.089 ns (#3), 0.125 ns (#4), 0.143 ns (#5), 0.179 ns (#6), 0.250 ns (#7), 0.357 ns (#8), 0.500 ns (#9), 0.625 ns (#10), 0.714 ns (#11), 1.000 ns (#12), 1.250 ns (#13), 2.500 ns (#14)	Encodes the trace time range per sample.
Sample count	256					32, 64, 128, 256, 512, 1024, 2048, 4096, 8192	Sample count per trace
Stacking	128					4, 16, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65535	Defines how many traces are stacked.
Tx PRF	299	1	310	1	kHz		Transmission frequency, khz (Tx PRF)
Cut off altitude, m	1.2	0.0	10.0	0.1	m		Cut off altitude limit for the transmitter.
Altitude source	Default					Lightware SF30D, Ainstein US-D1, Nanoradar NRA24, Mavlink (autopilot), Default	Altimeter that will be used for alti- tude data
Data log dir	/data/skyhub_logs						Path on SkyHub storage where data is saved
Idle time, s	5	0	100	1	s		Time before connection check if no data was received from the device.
Payload Id	212	192	220	1			Payload Id
Data log dir	/data/skyhub_logs						Path on SkyHub storage where RAW log files are saved

IP address	192.168.0.10					IP the	address device	of in
ir address	192.108.0.10					the netw	Ethe ork	rnet
TCP port	23	0	65535	1		_	ort to con levice	nect
Telemetry period	2000	0	10000	1	ms	refre	sh rate, often to s values	

Zond Aero GPR

Note The GPR power cable may be connected/disconnected only when the system is powered off.

- Connect the GPR power cable to SkyHub Power output port #7.
- Connect the GPR Ethernet cable to SkyHub Ethernet port #10.

Power on the system.

- Establish connection with SkyHub in UgCS-CPM.
- Open the Payloads list.
- Enable the GPR driver in the UgCS-CPM Payloads interface.
- GPR: Zond Aero.

Press "Save" in the Payloads interface and confirm system reload.

- Navigate to the main screen, press "Start" and add the GPR widget from the list.
- Access full configuration from Settings.

Note It is possible to configure GPR using Prism2 software when the GPR is connected to SkyHub. It is necessary to establish a connection with SkyHub over Wi-Fi and ensure that UgCS-CPM is closed before starting configuration in Prism2.

16.1 Zond Aero GPR Configuration Parameters

Parameter	Default	Min	Max	Precision	Unit	Options	Description
Time range	200					50, 100, 200,	Time range per
Time range	200					300, 500	sample, ns
							Pulse delay should
Pulse delay	174	0	2000	1			be set up during
r uise delay	1/4	0	2000	1			the calibration in
							Prism2.
Cut off alti-							Cut off altitude
tude, m	1.2	0.0	10.0	0.1	m		limit for the trans-
tude, iii							mitter.

Altitude source	Default					Lightware SF30D, Ainstein US-D1, Nanoradar NRA24, Mavlink (autopilot), Default	Altimeter that will be used for alti- tude data
Data log dir	/data/skyhub_logs						Path on SkyHub storage where data is saved
Idle time, s	5	0	100	1	s		Time before connection check if no data was received from the device.
Payload Id	212	192	220	1			Payload Id
Data log dir	/data/skyhub_logs						Path on SkyHub storage where RAW log files are saved
IP address	192.168.0.10						IP address of the device in the Ethernet network
TCP port	23	0	65535	1			IP port to connect the device
Telemetry period	2000	0	10000	1	ms		Telemetry data refresh rate, ms How often to send the values to the CPM

SBES: EchoLogger

Note The Sensor may be connected/disconnected only when the system is powered off.

- Attach the Universal Heavy Payload mount to the bottom of your drone.
- Attach the Echologger to the Universal Heavy Payload mount.
- Connect the cable to the SkyHub Connector #4 (white).

Power on the system.

- Establish either the drone link or auxiliary connection with the SkyHub in the UgCS-CPM software.
- On the main screen of the UgCS-CPM, click on the "Payloads" button.
- From the available payload list, enable the "SBES: EchoLogger".
- Press the "Save" button and confirm system reload.

Wait until the reload process is finished and the connection to the SkyHub is reestablished.

- On the main screen of the UgCS-CPM, click the "Start" button.
- From the drop-down widget list, select the "SBES: EchoLogger single-frequency" if you have the ECT400 model, or "SBES: EchoLogger dual-frequency" if you have the D052S/D24S model, and press the blue "plus" button.
- To access the configuration menu, press on the "three-dot" icon on the upper right corner of the widget and select "Settings".

17.1 SBES: EchoLogger Configuration Parameters (Single frequency)

Parameter	Default	Min	Max	Precision	Unit	Options	Description
Range	10				m	2, 3, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150, 200	Maximum measurement range for high frequency
Measurement interval	0.1	0.0	4.0	0.1	S		Measurement interval

Output data mode	NMEA					NMEA, ECHOSOUNDER	NMEA: Output data in NMEA format only ECHOSOUNDER: Output data in NMEA and SEG-Y formats Sensor internal
Sampling rate	0				Hz	0, 6250, 12500, 25000, 50000, 100000	sampling frequency, rele- vant only for ECHOSOUNDER mode
Gain	0				dB	+50, +40, +30, +20, +10, +6, 0, -6, -10, -20, -30, -40, -50	Signal gain, dB
Cable length	2.1	0.0	10.0	0.01	m		Distance from altimeter to bottom of echosounder
Altimeter threshold	10					5, 10, 15, 20, 30, 40, 50, 60, 70	Altimeter threshold in percents of a full scale
Transmitted pulse length	50	10	200	10	us		Transmission pulse length, microsecond
Dead zone	500	0	10000	1	mm		Near field zone where detection is ignored, mm
Data log dir	/data/skyhub_logs						Path on SkyHub storage where data is saved
Max sensor angle	10	0	90	1	degree		The data are not recorded if the sensor tilt/roll value is greater than the specified value, degree
Sensor depth	0.1	0.0	1.0	0.1	m		Minimum sensor depth below water surface to record data in NMEA and SGY
Payload Id	192	192	220	1			Payload Id
Raw log	False						Write raw data byte stream into separate log
Raw log path	/data/skyhub_logs						Path to SkyHub storage for raw log files

Altitude source	Default			Lightware SF30D, Ainstein US-D1, Nanoradar NRA24, Mavlink (autopilot), Default	Altimeter that will be used for alti- tude data
UART baud rate	115200		bps	4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600	Connection port baud rate, 115200 recommended by manufacturer
Serial device	Connector #4			Connector #4, Connector #5	SkyHub connector number where altimeter is connected

17.2 SBES: EchoLogger Configuration Parameters (Dual frequency)

Parameter	Default	Min	Max	Precision	Unit	Options	Description
Range high	10				m	2, 3, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150, 200	Maximum measurement range for high frequency
Range low	10				m	2, 3, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150, 200	Maximum measurement range for low frequency
Measurement interval	0.1	0.0	4.0	0.1	s		Measurement interval
Output data mode	NMEA					NMEA, ECHOSOUNDER	NMEA: Output data in NMEA format only ECHOSOUNDER: Output data in NMEA and SEG-Y formats
Sampling rate	0				Hz	0, 6250, 12500, 25000, 50000, 100000	Sensor internal sampling frequency, relevant only for ECHOSOUNDER mode
Gain high	0				dB	+50, +40, +30, +20, +10, +6, 0, -6, -10, -20, -30, -40, -50	Signal gain for high frequency channel, dB
Gain low	0				dB	+50, +40, +30, +20, +10, +6, 0, -6, -10, -20, -30, -40, -50	Signal gain for low frequency channel, dB

	T						
Cable length	2.1	0.0	10.0	0.01	m		Distance from altimeter to bottom of echosounder
Altimeter threshold high	10					5, 10, 15, 20, 30, 40, 50, 60, 70	Altimeter threshold in percents of a full scale for high frequency
Altimeter threshold low	10					5, 10, 15, 20, 30, 40, 50, 60, 70	Altimeter threshold in percents of a full scale for low frequency
Transmitted pulse length high	50	10	200	1	us		Transmission pulse length for high frequency channel, microsecond
Transmitted pulse length low	50	10	200	1	us		Transmission pulse length for low frequency channel, microsecond
Dead zone, high	300	150	10000	1	mm		Near field zone where detection is ignored for high acoustic frequency, mm
Dead zone, low	1000	500	10000	1	mm		Near field zone where detection is ignored for low acoustic frequency, mm
Data log dir	/data/skyhub_logs						Path on SkyHub storage where data is saved
Max sensor angle	10	0	90	1	degree		The data are not recorded if the sensor tilt/roll value is greater than the specified value, degree
Sensor depth	0.1	0.0	1.0	0.1	m		Minimum sensor depth below water surface to record data in NMEA and SGY
Payload Id	192	192	220	1			Payload Id
Raw log	False			-			Write raw data byte stream into separate log
Raw log path	/data/skyhub_logs						Path to SkyHub storage for raw log files

Altitude source	Default		Lightware SF30D, Ainstein US-D1, Nanoradar NRA24, Mavlink (autopilot), Default	Altimeter that will be used for alti- tude data
UART baud rate	115200	bps	4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600	Connection port baud rate, 115200 recommended by manufacturer
Serial device	Connector #4		Connector #4, Connector #5	SkyHub connector number where altimeter is connected

MBES: Cerulean Surveyor 240-16

Note The Sensor may be connected/disconnected only when the system is powered off.

- Attach the Universal Heavy Payload mount to the bottom of your drone.
- Attach the payload to the Universal Heavy Payload mount.
- Connect the power cable to the SkyHub power output port #7.
- Connect the Ethernet cable to the SkyHub Ethernet port #10.

Power on the system.

- Establish either the drone link or auxiliary connection with the SkyHub in the UgCS-CPM software.
- On the main screen of the UgCS-CPM, click on the "Payloads" button.
- From the available payload list, enable the "MBES: Cerulean Surveyor".
- Press the "Save" button and confirm system reload.

Wait until the reload process is finished and the connection to the SkyHub is reestablished.

- On the main screen of the UgCS-CPM, click the "Start" button.
- From the drop-down widget list, select the "MBES: Cerulean Surveyor" and press the blue "plus" button.
- To access the configuration menu, press on the "three-dot" icon on the upper right corner of the widget and select "Settings".

18.1 MBES: Cerulean Surveyor Configuration Parameters

Parameter	Default	Min	Max	Precision	Unit	Options	Description
Measurement interval	0.1	0.0	5.0	0.1	s		Measurement interval
Range	10	0	100	1	m		Maximal readings range threshold in meters
Gain	-1	-1	10	1	dB		Signal gain, dB
Speed of sound	1481	0	5000	1	mps		Speed of sound, m/s
Deadzone	300	0	1000	1	mm		Sensor dead- zone, mm

Pulse duration	0	0	1000	1	us		Pulse durations, us Value 0 for automatic selec- tion
Cable length	1.6	0	5	0.01	m		Distance from altimeter to bottom of echosounder
Max sensor angle	180	0	180	1	degree		The data are not recorded if the sensor tilt/roll value is greater than the specified value, degree
Min sensor depth	0.1	0.0	1.0	0.1	m		Minimum sensor depth below water surface
Altitude source	Default					Lightware SF30D, Ainstein US-D1, Nanoradar NRA24, Mavlink (autopilot), Default	Altimeter that will be used for altitude data
Data log dir	/data/skyhub_logs						Path on SkyHub storage where data is saved
IP address	192.168.0.10						IP address of the device in the Ethernet network
TCP Port	62312	0	65535	1			TCP-port of the sensor
NTP IP address	192.168.0.10	165	226				NTP server IP address
Payload Id	192	192	220	1			Payload Id

Magnetometer MagNIMBUS

MagNIMBUS comes in two possible configurations:

- 1. Single sensor (beneath the drone) with foldable mount.
- 2. Gradiometer.

19.1 Single sensor assembly

Note The Sensor may be connected/disconnected only when the system is powered off.

- Attach the Universal Heavy Payload mount to the bottom of your drone.
- Attach the magnetometer to the Universal Heavy Payload mount.
- Connect the cable to SkyHub Connector #4 (white).

Power on the system.

- Establish either the drone link or auxiliary connection with the SkyHub in the UgCS-CPM software.
- On the main screen of the UgCS-CPM, click on the "Payloads" button.
- From the available payload list, enable the "Magnetometer:MagNIMBUS".
- Press the "Save" button and confirm system reload.

Wait until the reload process is finished and the connection to the SkyHub is reestablished.

- On the main screen of the UgCS-CPM, click the "Start" button.
- From the drop-down widget list, select the "Magnetometer:MagNIMBUS" and press the blue "plus" button.
- To access the configuration menu, press on the "three-dot" icon on the upper right corner of the widget and select "Settings".

19.2 Gradiometer assembly

Note The Sensor may be connected/disconnected only when the system is powered off.

- Attach the Universal Heavy Payload mount to the bottom of your drone.
- Attach the magnetometer to the Universal Heavy Payload mount.

- Connect the cable to SkyHub Connector #4 (white).
- Attach vertical mast on the left side of the drone.

Note Vertical mast has two points of contact:

- 1. Upper mount (in the shape of an arrow) should be attached to the top panel of the drone.
- 2. Lower mount (in the shape of a regular clip) should be attached to the leg of the drone.
- Connect the USB cable to the SkyHub USB port #11 (white).

Power on the system.

- Establish either the drone link or auxiliary connection with the SkyHub in the UgCS-CPM software.
- On the main screen of the UgCS-CPM, click on the "Payloads" button.
- From the available payload list, enable the "Magnetometer:MagNIMBUS".
- Press the "Save" button and confirm system reload.

Wait until the reload process is finished and the connection to the SkyHub is reestablished.

- On the main screen of the UgCS-CPM, click the "Start" button.
- From the drop-down widget list, select the "Magnetometer:MagNIMBUS" and press the blue "plus" button.
- To access the configuration menu, press on the "three-dot" icon on the upper right corner of the widget and select "Settings".
- Within the settings menu, navigate to the "Secondary connector" field and from the drop-down list select the USB port used for the mast.

19.3 Magnetometer MagNIMBUS Configuration Parameters

Parameter	Default	Min	Max	Precision	Unit	Options	Description
Sensor data rate	4				ms	1, 2, 4, 8, 16, 32, 64, 128, 1000, 2000	Time in ms between measurements output. 1ms corresponds to 1kHz output frequency (should be set port baud rate 230400). 4ms corresponds to 250Hz, an adequate setting for most applications.
Magnetic environment	AVERAGE					AVERAGE, QUIET, NOISY	Optimizes sensor for the magnetic environment
Filter mode	OFF					OFF, NOTCH_50HZ, NOTCH_60HZ, HP_10HZ, HP_20HZ, LP_10HZ, LP_20HZ	The command to change filter mode must be sent to all connected sensors as they can store configurations. OFF - all filters disabled. LP_05, LP_10, LP_20 - low-pass filters with cut-off frequency 05, 10, 20 Hz

Accelerometer log	ON					ON, OFF	Enables logging of IMU's accelerometer data.
Vector mode	ON					ON, OFF	The sensor reports Total field only (VECTORMODE=OFF) or Total field + XYZ components
Offset forward	0.0	0.0	2.0	0.01	m		The offset of the sensor N alongside the heading line, m Offset is calculated relative to the center of the GPS antenna or relative to the point for which coordinates are reported in 2x GPS antenna configurations like for DJI M350/M300 RTK.
Offset right	0.0	0.0	2.0	0.01	m		The offset of the sensor N alongside the traverse line, m Offset is calculated relative to the center of the GPS antenna or relative to the point for which coordinates are reported in 2x GPS antenna configurations like for DJI M350/M300 RTK.
Altitude source	Default					Lightware SF30D, Ainstein US-D1, Nanoradar NRA24, Mavlink (autopilot), Default	Altimeter that will be used for altitude data
Primary connector	Connector #4 (AMA3)					Connector #1 (AMA1), Connector #2 (S0), Connector #4 (AMA3)	SkyHub connector for Primary sensor
Secondary connector	<empty></empty>					<empty>, USB 1, USB 2</empty>	SkyHub connector for Secondary sensor
UART baud rate	230400				bps	115200, 230400	Connection port baud rate, 230400 recommended by manufacturer
Payload Id	192	192	220	1			Payload Id

Magnetometer MagDrone R1

Note The Sensor may be connected/disconnected only when the system is powered off.

- Attach the Universal Heavy Payload mount to the bottom of your drone.
- Attach the magnetometer to the Universal Heavy Payload mount.
- Connect the USB data cable to SkyHub USB port #11.
- Connect the power cable to SkyHub power output port #7.

Power on the system.

- Establish either the drone link or auxiliary connection with the SkyHub in the UgCS-CPM software.
- On the main screen of the UgCS-CPM, click on the "Payloads" button.
- From the available payload list, enable the "Magnetometer:MagDrone R1".
- Press the "Save" button and confirm system reload.

Wait until the reload process is finished and the connection to the SkyHub is reestablished.

- On the main screen of the UgCS-CPM, click the "Start" button.
- From the drop-down widget list, select the "Magnetometer:MagDrone R1" and press the blue "plus" button.
- To access the configuration menu, press on the "three-dot" icon on the upper right corner of the widget and select "Settings".

20.1 Magnetometer MagDrone R1 Configuration Parameters

Parameter	Default	Min	Max	Precision	Unit	Options	Description
Sensor data rate	250				Hz	200, 250	Sampling rate of the sensor (number of measurements per second)
Downsampling	0	0	100	1	ms		0 - disabled 1 - disabled as well 2 - every 2 measurements will be outputted as 1 100 - every 100 measurements will be outputted once

Downsampling type	Average					Average, Last sample, MAX ABS	Downsampling type
Offset forward	0.0	0.0	2.0	0.01	m		The offset of the sensor alongside the heading line, m Offset is calculated relative to the center of the GPS antenna or relative to the point for which coordinates are reported in 2x GPS antenna configurations like for DJI M300 RTK.
Altitude source	Default					Lightware SF30D, Ainstein US-D1, Nanoradar NRA24, Mavlink (autopilot), Default	Altimeter that will be used for altitude data
SkyHub connector	USB 1					Connector #4 (AMA3), Connector #5 (AMA4), USB 1, USB 2	SkyHub connector 4 or 5, USB port
Baud rate	115200	102			bps	115200, 230400	Connection port baud rate, 230400 recommended by manufacturer
Payload Id	192	192	220	1			Payload Id

Laser Falcon 1 / 2 Methane Detector

Note The Sensor may be connected/disconnected only when the system is powered off.

- Attach the mountings to the frame of the Laser Falcon sensor.
- Mount the sensor on the leg of the drone. Make sure that all three points of contact are secured.
- Connect the payload with the micro USB B-type cable to the SkyHub power out connector #7.
- Connect the data transfer cable with the mini USB B-type cable to the SkyHub USB port 1 or 2 #11.

Power on the system.

- Establish either the drone link or auxiliary connection with the SkyHub in the UgCS-CPM software.
- On the main screen of the UgCS-CPM, click on the "Payloads" button.
- From the available payload list, enable the "Laser Falcon 1 / 2 methane detector".
- Press the "Save" button and confirm system reload.

Wait until the reload process is finished and the connection to the SkyHub is reestablished.

- On the main screen of the UgCS-CPM, click the "Start" button.
- From the drop-down widget list, select the "Laser Falcon 1 / 2 methane detector" and press the blue "plus" button
- To access the configuration menu, press on the "three-dot" icon on the upper right corner of the widget and select "Settings".
- Within the "Settings", navigate to the "Serial device" field and change its value to "Connector USB1" or "Connector USB2", according to which USB connector the sensor is plugged into on SkyHub.

21.1 Laser Falcon 1 / 2 Methane Detector Configuration Parameters

Parameter	Default	Min	Max	Precision	Unit	Options	Description
Min concentra- tion	0	0	10000	1	ppm		Minimal gas concentration to report in CPM
Max concentra- tion	1000	0	10000	1	ppm		Maximal gas concentration to report CPM
Zero level	0	0	10000	1	ppm		Background compensation level

Frequency	2				Hz	1, 2	Polling frequency to request data from the device
Serial device	Connector #4 (AMA3)					Connector #4 (AMA3), Connector #5 (AMA4), Connector USB1, Connector USB2	SkyHub connector number where sensor is connected
Baud rate	19200				bps	9600, 19200, 115200	Connection port baud rate, 19200 recommended by manufacturer
Altitude source	Default					Default, DJI (autopilot), Mavlink (autopilot)	The source of coordinate data
Data log dir	/data/skyhub_logs						Path on SkyHub storage where data is saved
Payload Id	192	192	220	1			Payload Id

Laser Falcon Plus Methane Detector

Note The Sensor may be connected/disconnected only when the system is powered off.

- Attach the Universal Heavy Payload mount to the bottom of your drone.
- Attach the mounting cover to the back of the sensor.
- Mount the sensor on the Universal Heavy Payload mount.
- Connect the power cable to SkyHub power output port #7.
- Connect the Ethernet data transfer cable to SkyHub Ethernet port #10.

Power on the system.

- Establish either the drone link or auxiliary connection with the SkyHub in the UgCS-CPM software.
- On the main screen of the UgCS-CPM, click on the "Payloads" button.
- From the available payload list, enable the "Laser Falcon Plus methane detector".
- Press the "Save" button and confirm system reload.

Wait until the reload process is finished and the connection to the SkyHub is reestablished.

- On the main screen of the UgCS-CPM, click the "Start" button.
- From the drop-down widget list, select the "Laser Falcon Plus methane detector" and press the blue "plus" button.
- To access the configuration menu, press on the "three-dot" icon on the upper right corner of the widget and select "Settings".

22.1 Laser Falcon Plus Methane Detector Configuration Parameters

Parameter	Default	Min	Max	Precision	Unit	Options	Description
							IP address of
IP address	10.1.1.2						the device in
							the Ethernet network
Payload Id	213	192	220	1			Payload Id
						Lightware SF30D,	
						Ainstein US-D1,	Altimeter that will
Altitude source	Default					Nanoradar NRA24,	be used for altitude
						Mavlink (autopi-	data
						lot), Default	

FluX Aero Methane Sniffer

Note The Sensor may be connected/disconnected only when the system is powered off.

- Attach the Universal Heavy Payload mount to the bottom of your drone.
- Attach the gas detector to the Universal Heavy Payload mount.
- Connect the data cable to the SkyHub Connector #4 (white).
- Connect the sampling cable to the gas detector through the port with the label "IN".
- Attach the sampling arm through the holding clips on the side of the detector.
- Attach the sampling cable alongside the arm with the provided zip ties.

Power on the system.

- Establish either the drone link or auxiliary connection with the SkyHub in the UgCS-CPM software.
- On the main screen of the UgCS-CPM, click on the "Payloads" button.
- From the available payload list, enable the "FluX Aero Methane Sniffer".
- Press the "Save" button and confirm system reload.

Wait until the reload process is finished and the connection to the SkyHub is reestablished.

- On the main screen of the UgCS-CPM, click the "Start" button.
- From the drop-down widget list, select the "FluX Aero Methane Sniffer" and press the blue "plus" button.
- To access the configuration menu, press on the "three-dot" icon on the upper right corner of the widget and select "Settings".

23.1 FluX methane Gas Detector Configuration Parameters

Parameter	Default	Min	Max	Precision	Unit	Options	Description
Max concentra- tion	1000	0	10000	1	ppm		Maximal gas concentration to report CPM
Min concentra- tion	0	0	10000	1	ppm		Minimal gas concentration to report in CPM
Analog output Max	1000	0	10000	1	ppm		Maximal gas concentration to report to Analog output

			Ι				Minimal gas
Analog output Min	0	0	10000	1	ppm		Minimal gas concentration to report to Analog output
Analog reference offset	0	0	10000	1	m		Analog reference offset
Analog reference span	0.01	0.0	10000	0.01	m		Analog reference span
Integration time Gas 1	10	0	1000	1	ms		Integration time for gas 1, ms
Gas 1 offset	3	0	10000	1	ms		Concentration gas 1 Offset
Gas 1 span	1.1	0.0	10000	0.01	m		Concentration gas 1 Span
Integration time Gas 2	10	0	1000	1	ms		Integration time for gas 2, ms
Gas 2 offset	1500	0	10000	1	ms		Concentration gas 2 Offset
Gas 2 span	0.95	0.0	10000	0.01	m		Concentration gas 2 Span
Diagnostic mode	False						Diagnostic mode turn on/off
Baud rate	115200				bps	9600, 19200, 115200	Connection port baud rate, 115200 recommended by manufacturer
Mode	Single					Single, Dual	Switch sensor to single/double gases readings
Payload Id	192	192	220	1			Payload Id
Altitude source	Default					Lightware SF30D, Ainstein US-D1, Nanoradar NRA24, Mavlink (autopilot), Default	Altimeter that will be used for alti- tude data
Primary connector	Connector #4 (AMA3)					Connector #1 (AMA1), Connector #2 (S0), Connector #4 (AMA3)	SkyHub connector

Nanoradar MR72 Radar

Note The Sensor may be connected/disconnected only when the system is powered off.

- Attach the radar to the mountings provided with the sensor.
- Install the sensor at the top of the drone.
- Connect the cable to SkyHub Connector #4 (white).
- If the SkyHub Connector #4 (white) is already in use by a different payload, connect the sensor to the SkyHub Connector #2 (green).

Power on the system.

- Establish either the drone link or auxiliary connection with the SkyHub in the UgCS-CPM software.
- On the main screen of the UgCS-CPM, click on the "Payloads" button.
- From the available payload list, enable the "Nanoradar MR72 radar".
- Press the "Save" button and confirm system reload.

Wait until the reload process is finished and the connection to the SkyHub is reestablished.

- On the main screen of the UgCS-CPM, click the "Start" button.
- From the drop-down widget list, select the "Nanoradar MR72 radar" and press the blue "plus" button.
- To access the configuration menu, press on the "three-dot" icon on the upper right corner of the widget and select "Settings".

24.1 Nanoradar MR72 Radar Configuration Parameters

Parameter	Default	Min	Max	Precision	Unit	Options	Description
Ignore side sectors	False						Ignore side sectors during distance to obstacle definition
Payload Id	215	192	220	1			Payload Id
Raw log	False						Enable RAW log
UART baud rate	115200				bps	115200, 230400	Connection port baud rate, 115200 recommended by manufacturer

UART serial device	Connector #4 (AMA3)				Connector #1 (AMA1), Connector #2 (S0), Connector #4 (AMA3), Connector #5 (AMA4)	SkyHub connector number where altimeter is connected
--------------------	---------------------	--	--	--	--	---

GNSS Output

Note The receiver may be connected/disconnected only when the system is powered off.

GNSS Output sends messages containing RMC, ZDA, and GGA sentences in NMEA format to the defined address.

Coordinates, date, time, and other information for NMEA sentences are received from the drone (UAV).

Used for SenSys MagDrone R3, SenSys MagDrone R4, and other payloads requiring GNSS output.

- Attach your MagDrone or any other supported payload to the drone.
- Connect the GNSS data transfer cable to the SkyHub Connector #5 (blue).

Power on the system.

- Establish either the drone link or auxiliary connection with the SkyHub in the UgCS-CPM software.
- On the main screen of the UgCS-CPM, click on the "Payloads" button.
- From the available payload list, enable the "GNSS output".
- Press the "Save" button and confirm system reload.

Wait until the reload process is finished and the connection to the SkyHub is reestablished.

- To access the configuration menu, on the main screen of the UgCS-CPM, click the "Settings" button.
- From the drop-down widget list, select the "GNSS output".

25.1 GNSS Output Configuration Parameters

Parameter	Default	Min	Max	Precision	Unit	Options	Description
						57600,	
Baud rate	57600				bps	115200,	Set output port baud rate
						230400	
						Connector	
Serial device	Connector					#4 (AMA3),	SkyHub connector number
Serial device	#5 (AMA4)					Connector	where device is connected
						#5 (AMA4)	
Diagnostic	False						Enable or disable PPS echo
mode	raise						mode
GGA Rate	5	0	100	1	Hz		Rate of GGA messages
GGA Kale]	0	100	1	112		update rate

HDT Rate	1	0	100	1	Hz		Rate of HDT messages update rate
RMC Rate	5	0	100	1	Hz		Rate of RMC messages update rate
RMZ Rate	5	0	100	1	Hz		Rate of RMZ messages update rate
ZDA Rate	1	0	100	1	Hz		Rate of ZDA messages update rate
Prefix	GN					GN, GP, GA	Two letters prefix for generated messages ID: \$ <pre-fix><message></message></pre-fix>
NMEA Messages	RMC GGA ZDA						NMEA messages list to send into port. List entries are space-separated. Supported messages are: RMC GGA ZDA RMZ HDT.
NMEA Log path							Write NMEA messages into text file in the specified directory

GNSS Receiver

Note The receiver may be connected/disconnected only when the system is powered off.

GNSS plugin supports GPS receivers with NMEA output data and connection through USB or UART.

GNSS plugin supports parsing for ZDA and GGA sentences of NMEA format.

- Attach the receiver to the drone.
- Additional receiver configuration might be necessary depending on the model you choose.
- Connect the data transfer cable to the SkyHub Connector #4 (white).

Power on the system.

- Establish either the drone link or auxiliary connection with the SkyHub in the UgCS-CPM software.
- On the main screen of the UgCS-CPM, click on the "Payloads" button.
- From the available payload list, enable the "GNSS receiver".
- Press the "Save" button and confirm system reload.

Wait until the reload process is finished and the connection to the SkyHub is reestablished.

- On the main screen of the UgCS-CPM, click the "Start" button.
- From the drop-down widget list, select the "GNSS receiver" and press the blue "plus" button.
- To access the configuration menu, press on the "three-dot" icon on the upper right corner of the widget and select "Settings".

26.1 GNSS Receiver Configuration Parameters

Parameter	Default	Min	Max	Precision	Unit	Options	Description
Baud rate	115200				bps	115200, 230400	Set output port baud rate
Date format	yyyy/mm/dd						Date string format to write into log
Time format	hh:mm:ss.zzz						Time string format to write into log
NMEA Messages	GGA ZDA						NMEA messages list to send into port. List entries are space-separated.

Prefix	GN				GN, GP, GA	Two letters prefix for incoming messages ID: \$ <prefix><message></message></prefix>
Payload Id	192	192	220	1		Payload Id
Serial device	Connector #4 (AMA3)				Connector #4 (AMA3), Connector #5 (AMA4)	SkyHub connector number where device is connected

Universal Driver

Universal driver can be used to connect and display data from non-integrated (custom-developed) payloads and sensors.

Note Never connect any payload when the system is powered on.

- Attach the custom sensor to the drone.
- Connect the data transfer cable to the SkyHub Connector #4 (white) or Connector #5 (blue).
- Connect the power cable to the SkyHub power output port #7 (if necessary).

Power on the system.

- Establish either the drone link or auxiliary connection with the SkyHub in the UgCS-CPM software.
- On the main screen of the UgCS-CPM, click on the "Payloads" button.
- From the available payload list, enable the "Universal driver".
- Press the "Save" button and confirm system reload.

Wait until the reload process is finished and the connection to the SkyHub is reestablished.

- On the main screen of the UgCS-CPM, click the "Start" button.
- From the drop-down widget list, select the "Universal driver" and press the blue "plus" button.
- To access the configuration menu, press on the "three-dot" icon on the upper right corner of the widget and select "Settings".

27.1 Universal Driver Configuration Parameters

Parameter	Default	Min	Max	Precision	Unit	Options	Description
Serial device	Connector #4 (AMA3)					Connector #4 (AMA3), Connector #5 (AMA4)	SkyHub connector number where device is connected
Payload Id	192	192	220	1			Payload Id
UART baud rate	115200				bps	9600, 14400, 19200, 38400, 57600, 115200, 128000, 256000	Connection port baud rate, 115200 recommended by manufacturer
Sensor name	MySensor						Log file suffix

Revision 4.3, October 2025

Separator pattern	rn			How records	to	split
Value pattern	d+			How to in the re		values

Wind Sensor (FTT)

Note The Sensor may be connected/disconnected only when the system is powered off.

- Attach the pole holding the sensor to the drone using two mounting places.
- Tighten the first mount (at the bottom of the pole) to the leg of the drone.
- Tighten the second mount (at the middle of the pole) to the top of the drone.
- Connect the data cable to SkyHub Connector #4 (white).

Power on the system.

- Establish either the drone link or auxiliary connection with the SkyHub in the UgCS-CPM software.
- On the main screen of the UgCS-CPM, click on the "Payloads" button.
- From the available payload list, enable the "Wind sensor (FTT)".
- Press the "Save" button and confirm system reload.

Wait until the reload process is finished and the connection to the SkyHub is reestablished.

- On the main screen of the UgCS-CPM, click the "Start" button.
- From the drop-down widget list, select the "Wind sensor (FTT)" and press the blue "plus" button.
- To access the configuration menu, press on the "three-dot" icon on the upper right corner of the widget and select "Settings".

28.1 Wind Sensor (FTT) Configuration Parameters

Parameter	Default	Min	Max	Precision	Unit	Options	Description
Min wind speed	0.0	0.0	100.0	0.01	mne		Minimal wind
Willi willd speed	0.0	0.0	100.0	0.01	mps		speed limit
Max wind	1000.0	0.0	1000.0	0.01	mps		Maximal wind
speed	1000.0	0.0	1000.0	0.01	Imps		speed limit
							Write raw data
Raw log	False						byte stream into
							separate log
						Connector #4	SkyHub connector
Serial device	Connector #4					(AMA3),	number where
Schai device	(AMA3)					Connector #5	altimeter is
						(AMA4)	connected

Revision 4.3, October 2025

Baud rate	38400				bps	19200, 38400, 57600	Connection port baud rate, 38400 recommended by manufacturer
Payload Id	217	192	220	1			Payload Id

Ebinger VEMOS AIR

Note The Sensor may be connected/disconnected only when the system is powered off.

- Attach the Universal Heavy Payload mount to the bottom of your drone.
- Attach the safety anchor to the Universal Heavy Payload mount.
- Attach the SkyHub to the drone.
- Attach the controller on the legs of the drone (front side).
- Connect the data cable from the controller to the SkyHub Connector #4 (white).
- Attach the altimeter (mounted on the rod) to the front leg of the drone.
- Connect the altimeter to the SkyHub Connector #1 (yellow).
- Connect the coil to the controller.
- Connect the coil's ring to the safety anchor.

Power on the system.

- Establish either the drone link or auxiliary connection with the SkyHub in the UgCS-CPM software.
- On the main screen of the UgCS-CPM, click on the "Payloads" button.
- From the available payload list, enable the "Ebinger Vemos".
- Press the "Save" button and confirm system reload.

Wait until the reload process is finished and the connection to the SkyHub is reestablished.

- On the main screen of the UgCS-CPM, click the "Start" button.
- From the drop-down widget list, select the "Ebinger Vemos" and press the blue "plus" button.
- To access the configuration menu, press on the "three-dot" icon on the upper right corner of the widget and select "Settings".

29.1 Ebinger VEMOS AIR Configuration Parameters

Parameter	Default	Min	Max	Precision	Unit	Options	Descrip	tion
							38400 is	recom-
Baud rate	38400				bps	38400, 115200	mended	by
							the vendor	

Revision 4.3, October 2025

Serial device	Connector #4 (AMA3)				Connector (AMA3), Connector (AMA4)	#4	SkyHub connector number where sensor is connected
Payload Id	192	192	220	1			Payload Id

Geolux LX-80-AB

Note The Sensor may be connected/disconnected only when the system is powered off.

- Attach the Universal Heavy Payload mount to the bottom of your drone.
- Attach the sensor to the Universal Heavy Payload mount.
- Connect the data cable to the SkyHub Connector #4.
- Connect the power cable to the SkyHub power in connector #6.

Power on the system.

- Establish either the drone link or auxiliary connection with the SkyHub in the UgCS-CPM software.
- On the main screen of the UgCS-CPM, click on the "Payloads" button.
- From the available payload list, enable the "Geolux LX-80-AB".
- Press the "Save" button and confirm system reload.

Wait until the reload process is finished and the connection to the SkyHub is reestablished.

- On the main screen of the UgCS-CPM, click the "Start" button.
- From the drop-down widget list, select the "Geolux LX-80-AB" and press the blue "plus" button.
- To access the configuration menu, press on the "three-dot" icon on the upper right corner of the widget and select "Settings".

30.1 Geolux LX-80-AB Configuration Parameters

Parameter	Default	Min	Max	Precision	Unit	Options	Description
						can0, can1,	
Can interface	can0					can2, can3,	Can interface
						can4	
							Path on SkyHub
Data log dir	/data/skyhub_logs						storage where data
							is saved
Payload Id	192	192	220	1			Payload Id
							SkyHub connector
Serial device	Connector #4					Connector #4,	number where
Serial device	Connector #4					Connector #5	sensor is
							connected

Baud rate	115200		bps	9600, 19200, 115200	Connection port baud rate, 115200 is recommended by the vendor
Altitude source	Default			Lightware SF30D, Ainstein US-D1, Nanoradar NRA24, Mavlink (autopilot), Default	Altimeter that will be used for alti- tude data

Geolux RSS-2-AB

Note The Sensor may be connected/disconnected only when the system is powered off.

- Attach the Universal Heavy Payload mount to the bottom of your drone.
- Attach the sensor to the Universal Heavy Payload mount.
- Connect the data cable to the SkyHub Connector #4.
- Connect the power cable to the SkyHub power in connector #6.

Power on the system.

- Establish either the drone link or auxiliary connection with the SkyHub in the UgCS-CPM software.
- On the main screen of the UgCS-CPM, click on the "Payloads" button.
- From the available payload list, enable the "Geolux RSS-2-AB".
- Press the "Save" button and confirm system reload.

Wait until the reload process is finished and the connection to the SkyHub is reestablished.

- On the main screen of the UgCS-CPM, click the "Start" button.
- From the drop-down widget list, select the "Geolux RSS-2-AB" and press the blue "plus" button.
- To access the configuration menu, press on the "three-dot" icon on the upper right corner of the widget and select "Settings".

31.1 Geolux RSS-2-AB Configuration Parameters

Parameter	Default	Min	Max	Precision	Unit	Options	Description
Altitude source	Default					Lightware SF30D, Ainstein US-D1, Nanoradar NRA24, Mavlink (autopilot), Default	Altimeter that will be used for alti- tude data
Baud rate	9600				bps	9600, 19200	Connection port baud rate, 9600 is recommended by vendor

Revision 4.3, October 2025

Can interface	can0					Can interface
						Path on SkyHub
Data log dir	/data/skyhub_logs					storage where data
						is saved
Payload Id	192	192	220	1		Payload Id
						SkyHub connector
Serial device	Connector #4				Connector #4,	number where
Serial device	Connector #4				Connector #5	sensor is
						connected

Drop Messenger

Note The water sampler may be connected/disconnected only when the system is powered off.

- Attach the Universal Heavy Payload mount to the bottom of your drone.
- Attach the water sampler to the Universal Heavy Payload mount.
- Connect the power cable to the SkyHub power output port #7.

Power on the system.

- Establish either the drone link or auxiliary connection with the SkyHub in the UgCS-CPM software.
- On the main screen of the UgCS-CPM, click on the "Payloads" button.
- From the available payload list, enable the "Drop messenger".
- Press the "Save" button and confirm system reload.

Wait until the reload process is finished and the connection to the SkyHub is reestablished.

- To access the configuration menu, on the main screen of the UgCS-CPM, click the "Settings" button.
- From the drop-down widget list, select the "Drop messenger".

32.1 Drop Messenger Configuration Parameters

Parameter	Default	Min	Max	Precision	Unit	Description
Control nin	24	0	36	1		The number of RPI GPIO pin used to control
Control pin	24	0	30	1		the payload.
Initial state	True					The initial level of control pin. True = high,
Illitiai state	True					False = low
Power cycle, s	0.5	0.1	5	0.1		The duration of power flips on release event
rowei cycle, s	0.5	0.1)	0.1	S	(seconds).

True Terrain Following

33.1 Hybrid route

In a hybrid route, it is possible to combine waypoints and segments with different altitude modes - AGL/AMSL for altitude navigation using GPS and Rangefinder for altitude navigation using an altimeter. AGL/AMSL altitude can be used in parts of the route where it is necessary to fly over obstacles or very uneven terrain, where flight using an altimeter would cause a lot of ascending and descending. Rangefinder altitude is used for TTF segments where it is necessary to maintain altitude using an altimeter for data collection.

Note It is recommended to set AGL/AMSL altitude at least 5 m above the digital elevation map.

Warning Attention: due to elevation model error, real AGL altitude may differ from expected.

Use additional waypoints to create a smooth transition from AGL/AMSL to Rangefinder altitudes. For accurate altitude transition, it is recommended to set the turn type to Stop & turn.

Example:

- Waypoint#1 AGL 20m;
- Waypoint#2 AGL 5m;
- Waypoint#3 Rangefinder 3m;
- Waypoint#4 Rangefinder 1m.

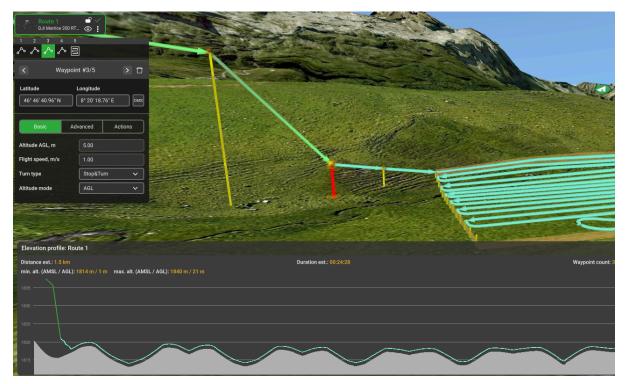


Figure 33.1. Transition from AGL to Rangefinder mode

Note For the mission to be uploaded to the SkyHub, at least one waypoint or segment of your route must be in the **Rangefinder** mode. Otherwise, the mission will be uploaded to the DJI autopilot.

33.2 Rangefinder route

If flight specifics require that flight altitude is maintained using an altimeter during the entire route from the start position, Rangefinder altitude can be used on all route segments.

The drone will take Rangefinder altitude using the altimeter immediately after Terrain Following activation and move to the first position on the route while maintaining this altitude.

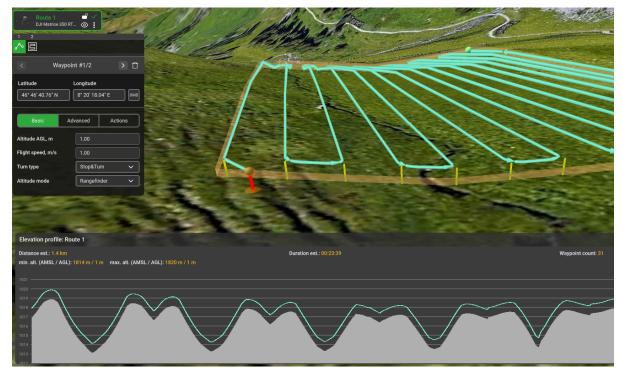


Figure 33.2. Route with all segments with Rangefinder altitude

33.3 Flight process step by step

- 1. Connect your PC to the Wi-Fi network. Start the UgCS flight planning software on your PC and plan a mission for the drone.
- 2. Ensure that SkyHub and all payload devices are properly connected to the drone.
- 3. Turn on the DJI Remote Controller and connect it to the same Wi-Fi network as the PC.

Note If you are using the DJI RC Plus controller, make sure that the switch is in the N-mode.

If you are using the **DJI Smartcontroller**, make sure that the switch is in the P-mode.

- 4. Run the UgCS Companion mobile application on your remote controller. Wait for the application to show the main window and connect to UgCS on your PC.
- 5. Ensure that the drone with a correct profile appears in the UgCS on the PC and drone telemetry (battery, uplink, downlink, satellites) are present.
- 6. Ensure that only the used payloads are enabled in the UgCS-CPM Payloads section. Each payload should be properly configured, following the sensor setup guide.

Note Before the flight, you can erase old data files from the SkyHub if they are no longer needed (see Log Files Management for details).

7. Check if the UgCS, Drone, and SkyHub indicators are green. Add the Terrain Following widget and other widgets related to connected payloads by clicking the "plus" button.

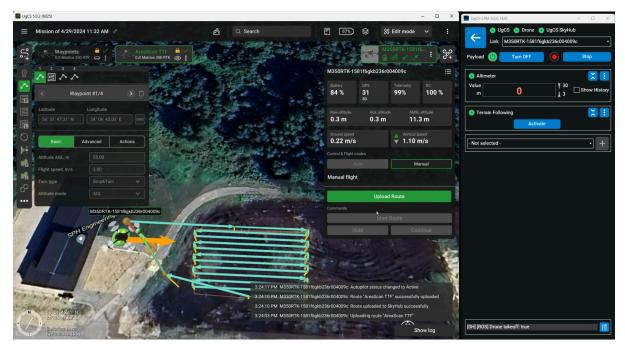


Figure 33.3. UgCS and UgCS-CPM application open side-by-side

8. Check the Altimeter widget, it should displays the altimeter data.

Note While stationary, radar altimeter will display the random readings. This is expected behaviour, since it must be in a motion to get the true readings.

9. Check the altitude Min/Max limits in altimeter widget settings.

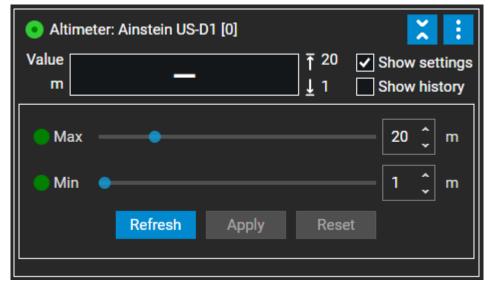


Figure 33.4. Altimeter Min/Max value setup

Note If during the flight, altimeter will receive the readings that are below the minimum or above the maximum values you set, **failsafe action** will be triggered.

10. Check and configure Safe altitude in True Terrain Following widget settings.

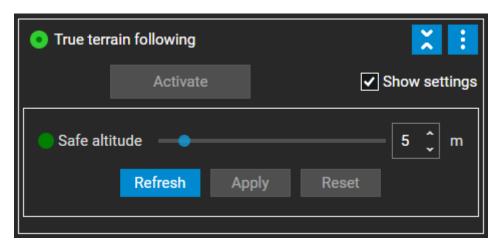


Figure 33.5. Altimeter safe altitude setup

Note During the failsafe, the drone will ascend to the **safe altitude** value you selected and execute a chosen failsafe action.

Warning Failsafe may be triggered:

- During TTF activation. If at the moment, the drone is higher or lower than min/max altitude.
- If the altitude readings during the flight are below min. altitude (the drone is too close to the ground or obstacle).
- If the altitude readings during the flight go above the max. altitude (sudden elevation changes).
- If the SkyHub stops receiving the data from the altimeter.
- 11. Create / verify route in UgCS. All route altitudes must be in altimeter min / max range limits.

Warning Attention: For Hybrid route AGL and AMSL waypoints are navigated using GPS. SkyHub altitude safety check will trigger failsafe if drone flying to AGL or AMSL waypoint will go below the configured altimeter minimum value $MIN_ALTITUDE_M + 2m$.

Figure 33.6. First waypoint / Area scan segment with Rangefinder altitude configured

Warning Attention: It is strongly recommended not to set Target Altitude more than 10 meters for the laser altimeter above water

Attention: AGL and AMSL waypoints are navigated using GPS. SkyHub altitude safety check will trigger failsafe if drone flying to AGL or AMSL waypoint will go below **Altimeter Min value + 2m**.

- 12. Upload the route to the drone using Upload Route command in UgCS.
- 13. **Perform manual takeoff** using the DJI Remote Controller and rise up to the appropriate altitude (see limits from step 8).
- 14. Manually fly the drone close to route start position.
- 15. There are three ways how to activate True Terrain following flight:Press Start in UgCS Companion application

Move the flight mode switch from N-Mode then to F-mode

Press the Activate button in the Terrain Following widget

16. You may interrupt the flight by moving the flight mode switch from F-Mode then to N-mode, or by pressing the Pause button in UgCS Companion application or in True Terrain Following widget (UgCS-CPM).

The flight can be resumed by moving the flight mode switch to N-mode then to F-mode, or by pressing the Resume button in UgCS Companion application or in True Terrain Following widget (UgCS-CPM).

During pause you may manually control the drone, for example fly around an obstacle. In this case the drone returns to the nearest not completed point on the route by the shortest way after resuming.

Warning Attention: the flight mode on the DJI Remote Controller must be obligatory switched back to **N-mode** before manually control. Otherwise, the drone returns to an unexpected resuming point.

- 17. If the drone descends below the minimum allowed altitude or ascends above the maximum allowed altitude (see step 8), it stops, then climbs to safe altitude. Safe altitude can be configured in True Terrain Follwing widget settings. You may manually correct drone position and resume the flight according to recommendations at step 14.
- 18. After the mission has been completed the drone stops at the last waypoint then climbs to increase its alti-

- tudeto value configured in True Terrain Following widget settings.
- 19. Switch the flight mode to N-Mode to take control, then return the drone to the desired landing position, and land the drone manually.
- 20. Download the flight results (see Log Files Management).

Grasshopper Mode

34.1 Route requirements

Grasshopper action is executed on waypoints with **Wait action** assigned. Route may consist of mixed type of waypoints (Adaptive bank turn and Stop & turn), to navigate drone to survey area, and for survey have waypoints with **Wait action**. In the Grasshopper mode all waypoint turns will be executed as **Stop & turn**.

34.2 Flight

- 1. Start the PC and connect it to the Wi-Fi network. Start the UgCS and plan a mission for the drone. The descent points must be set as wait action, the wait duration defines waiting time in the descent point.
- 2. Turn on the drone, the payload, and SkyHub device.
- 3. Turn on the DJI Remote Controller and connect to the same Wi-Fi network as the PC. Be sure that the flight mode switch on the DJI Remote Controller is in N-mode. Run the UgCS Companion mobile application. Wait for the application to show the main window and connect to UgCS. The UgCS connection indicator in UgCS Companion should become green.
- 4. Ensure that the drone with a correct profile appears in the UgCS on the PC and all drone indicators (battery, uplink, downlink, satellites) are green. Select the drone and the mission.
- 5. Ensure that only the used payloads are enabled in the UgCS-CPM Payloads section. Each payload should be properly configured (see Sensors and Payloads part of the documentation).
- 6. Erase old log files if they are no longer needed (see Log Files Management for details).
- 7. Start the UgCS-CPM application and connect to UgCS with default credentials. Check the UgCS, Drone, and SkyHub indicators are green. Add the Terrain Following widget and other widgets related to connected payloads by clicking the plus button.

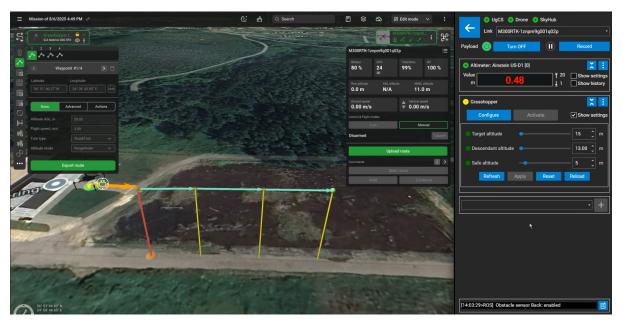


Figure 34.1. UgCS and UgCS-CPM application open side-by-side

8. Check the Altimeter widget for it displays the altimeter data. Check the altitude Min/Max limits in altimeter widget settings. Note that there is no data from the radar altimeter until the drone is moving. Gently shake the drone by hand until the altitude starts to change.

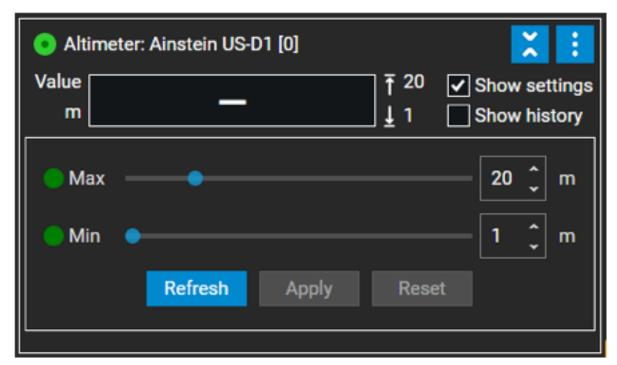


Figure 34.2. Altimeter Min/Max value configuration

- 9. Check the Altimeter widget for it displays the altimeter data. Note that there is no data from the radar altimeter until the drone is moving. Gently shake the drone by hand until the altitude starts to change.
- 10. Upload the route to the drone using UgCS. Once the route is uploaded to the SkyHub, Grasshopper parameter can be configured.

11. Go to the Grasshopper widget, press Refresh to read current GH settings.

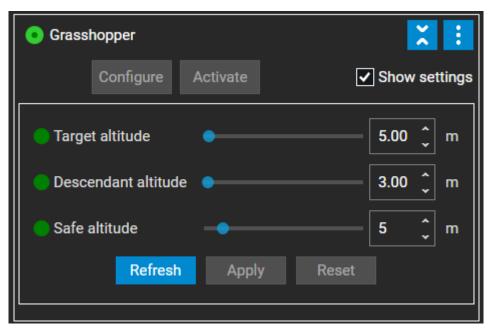


Figure 34.3. Grasshopper widget

12. Set Target Altitude for flight between measuring points in True Terrain Following mode. Set Descent altitude - altitude to which the drone will descend during Grasshopper action. Set Safe altitude - altitude to which the drone will ascend if the altimeter reading goes out of range and when the Grasshopper route is finished. Press Apply to save values.

Warning Attention: It is strongly recommended not to set Target Altitude more than 10 meters for the laser altimeter above water

- 13. Press the Configure button. Wait for the Grasshopper ENABLED message.
- 14. If there is no message mentioned above, change the flight mode switch to F-mode and back it to N-Mode, then try again to press the Configure button.
- 15. Take off using the DJI Remote Controller or from the UgCS and rise up to the appropriate altitude (see limits from step 8).
- 16. Press the Activate button in the Grasshopper widget to start the flight in grasshopper mode. The alternative way to activate it is to move the flight mode switch to F-mode or press Start in UgCS Companion application
- 17. You may interrupt the flight by moving the flight mode switch to N-mode or by pressing the Pause button in the Grasshopper widget (UgCS-CPM), or Pause button in UgCS Companion application.

The flight can be resumed by moving the flight mode switch to F-mode, or by pressing the Resume button in the Grasshopper widget (UgCS-CPM), or Resume button in UgCS Companion application.

During pause you may manually control the drone, for example fly around an obstacle. In this case the drone returns to the nearest point on the route by the shortest way after resuming.

Warning Attention: the flight mode on the DJI Remote Controller must be obligatory switched back to **N-mode** before manually control. Otherwise, the drone returns to an unexpected resuming point.

18. If the drone descends below the minimum allowed altitude or ascends above the maximum allowed altitude (see step 8), it stops, then climbs to increase its altitude to the value defined by the Safe altitude parameter in the Grasshopper widget, and then the route pauses.

34.2. Flight 123

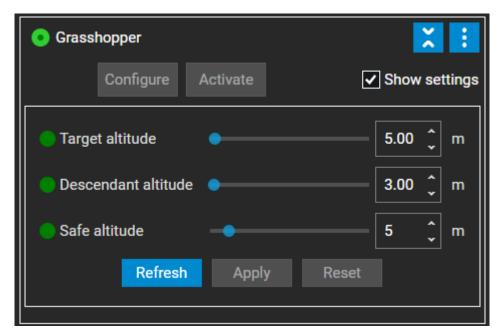


Figure 34.4. Grasshopper widget

You may manually correct drone position and resume the flight according to recommendations in the step 17.

- 19. After the mission has been completed, the drone stops at the last waypoint, then climbs to increase its altitude to the value defined by the Safe altitude parameter in the Grasshopper widget.
- 20. Return the drone to the desired landing position, and land. If the flight has been ended over the desired landing point, press the Land button in UgCS.
- 21. Download log files (see Log Files Management).

34.3 Configuration Parameters Summary

Parameter	Default	Min	Max	Precision	Unit	Description
Safe altitude	5	0.1	50	0.1	m	Safe altitude drone will take in case of
Sale allitude	3	0.1	30	0.1	m	failsafe or at the end of the route
Descendant altitude	3.0	0.0	1000.0	0.01	m	Grasshopper descent altitude
Target altitude	5.0	0.0	1000.0	0.01	m	Grasshopper flight target altitude
Descent speed	1.0	0.0	1000.0	0.01	m	Descent speed at grasshopper action
Descent speed	1.0	0.0	1000.0	0.01	m	points

Obstacle Avoidance

The Obstacle Avoidance feature provides automated safety protection during drone operations by detecting and responding to obstacles in the flight path. This system continuously monitors the drone's surroundings and automatically executes configured safety actions when obstacles are detected within specified distances.

The Obstacle Avoidance system uses multiple sensor types to detect obstacles around your drone. When an obstacle is detected within your configured safety distance, the system automatically executes your chosen safety action (hover, return home, or do nothing).

Note

• DJI drones have built-in obstacle avoidance sensors. Additionally, it is possible to attach a standalone radar sensor or additional altimeter to both DJI and MAVLink-controlled drones.

There are two main obstacle avoidance setup use cases:

- 1. Perform the flight only with the built-in DJI obstacle avoidance sensors.
- 2. Perform the flight with built-in DJI obstacle avoidance sensors paired with an external radar or altimeter.

Warning In both scenarios, DJI built-in downward obstacle avoidance sensors must be disabled if the drone is carrying a payload beneath. Otherwise, the downward sensor will detect the payload as an obstacle, and the failsafe will be triggered.

External sensors are necessary to add an additional layer of security in conditions when built-in DJI sensors will fail: dark, snow, rain, fog, bright sun.

Note Do not forget to check if 77 GHz range sensors are permitted for use in your particular country.

35.1 Setup process

- Power on the system.
- Establish either the drone link or auxiliary connection with the SkyHub in the UgCS-CPM software.
- On the main screen of the UgCS-CPM, click on the "Settings" button.
- From the drop-down list, select "Obstacle avoidance".
- Select the safety action.
- Select the activation altitude.
- Select the activation speed.
- Select the altitude source (source to measure if the drone has reached the activation altitude you set previously).

- Select the minimal safety distance threshold (minimal distance to the obstacle to detect. Values below this limit will be ignored).
- Select the safety distance limit (distance at which the failsafe will be triggered).
- (optional) Select the altimeter safety source (if your setup contains multiple altimeters and you wish to use one of them as a proximity source).
- (optional) Select the radar safety source (if your setup contains an external radar MR72).



Figure 35.1. UgCS-CPM, Obstacle avoidance settings

When the drone is on the ground or hovering in the air, the obstacle avoidance system is in idle state. For obstacle avoidance to be armed and active, the drone must reach a certain altitude and speed, or the TTF/GH mission under SkyHub control must be activated.

Those values can be set in the "Settings" within the UgCS-CPM.

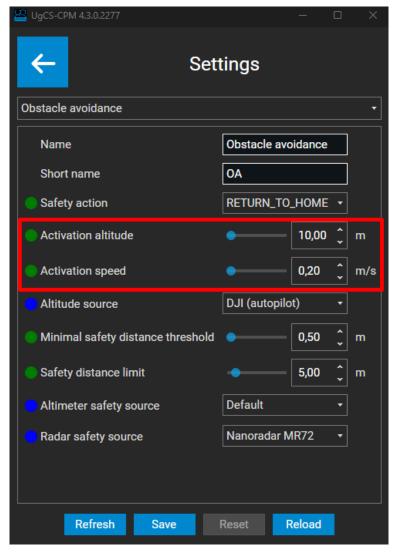


Figure 35.2. UgCS-CPM, Obstacle avoidance activation values

Note If no SkyHub mission is running, obstacle avoidance will be active only when both the activation altitude and activation speed are reached simultaneously. Otherwise, the system will be in idle state.

35.2 Safety actions

The safety action will determine the drone's behavior in case of close proximity to an object.

Here is the list of available actions you can choose from:

Action	Description		
RETURN_TO_HOME	Stop mission and initiate automatic return to home.		
STOP_AND_HOVER	Stop mission and maintain current position.		
WARNING	Display warning message, continue mission.		
NOTHING	No action will be taken, monitoring only.		

35.2. Safety actions

35.3 Altitude sources

Within the Altitude source, you can select the elevation source that will be used to check whether your drone has reached the activation altitude.

There are multiple altitude sources you can choose from:

Altitude source	Description	
Default	Use your default altimeter to measure activation altitude.	
DJI (autopilot)	Use the DJI built-in barometric readings to measure activation altitude.	
Mavlink	Use the Mavlink built-in barometric readings to measure activation altitude.	
(autopilot)	Ose the Mayhiik built-in barometric readings to measure activation attitude.	
Custom	Use a custom source of elevation.	

Note It is also possible to select the exact altimeter model from the list. This is designed for the flight cases if there are multiple altimeters mounted on the drone.

If your setup contains only one altimeter, choose between the "Default" or "Autopilot" values.

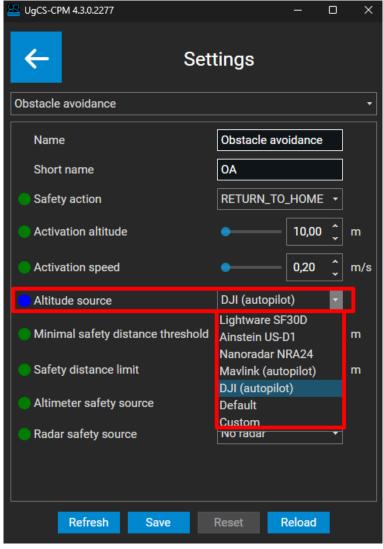


Figure 35.3. UgCS-CPM, Obstacle avoidance altitude sources

35.4 Safety sources

Within the safety sources, you can select the source you wish to use to measure the distance to an object (proximity).

There are two safety sources you can modify:

- Altimeter safety source if your setup contains multiple altimeters and you want to use one of them to measure the distance to an object.
- Radar safety source if your setup contains an external MR72 radar and you wish to use it to measure the distance to an object.
- **Embedded DJI sensors** cannot be configured with UgCS-CPM. Instead, SkyHub will use sensors which are enabled with the DJI Pilot 2 application.

Warning Do not modify Altimeter safety source if your setup contains only one altimeter. This field is designed only if your drone has multiple altimeters mounted at the same time.

35.4.1 Use case examples

- 1. If your setup contains only one altimeter (for the altitude measurement) and **no external MR72 radar**, your setup should be the following:
 - Altimeter safety source None
 - Radar safety source No radar

In this case, safety distance will be calculated from the built-in front DJI obstacle avoidance sensor.

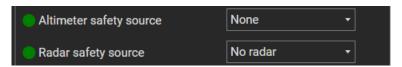


Figure 35.4. UgCS-CPM, setup with no external radar

- 2. If your setup contains only one altimeter (for the altitude measurement) and you have an external MR72 radar, your setup should be the following:
 - Altimeter safety source None
 - Radar safety source Nanoradar MR72

In this case, safety distance will be calculated from the external Nanoradar MR72 mounted on the drone.

Figure 35.5. UgCS-CPM, setup with external radar

35.4. Safety sources

35.5 Configuration Parameters Summary

Parameter	Default	Min	Max	Precision	Unit	Options	Description
Safety action	STOP_AND_HOVER					RETURN_TO_HOME, STOP_AND_HOVER, WARNING, NOTHING	Drone action flying to close to obstacle
Activation altitude	10.0	0.0	500.0	0.01	m		Obstacle Avoidance activation altitude
Activation speed	4.0	0.0	15.0	0.01	m/s		Obstacle Avoidance activation speed
Altitude source	Default					Lightware SF30D, Ainstein US-D1, Nanoradar NRA24, DJI (autopilot), Default	Altitude source that will be used for obstacle avoidance activation
Minimal safety distance threshold	0.5	0.0	50.0	0.01	m		Minimal distance to obstacle to detect. Values below this limit will be ignored
Safety distance limit	5.0	0.0	50.0	0.01	m		Safety distance at which fail- safe is trig- gered
Altimeter safety source	None					None, Lightware SF30D, Ainstein US-D1, Nanoradar NRA24, Default	Safety distance sources
Radar safety source	No radar					Nanoradar MR72, No radar	Safety distance sources

About Log Files

Logs are stored in the skyhub_logs folder on the microSD card.

There are two types of obligatory log files:

• Position log: *-position.csv

• System log: *-system.log

Position logs (-position.csv suffix) contain drone position data (GPS coordinates, attitude, altitude, etc.) followed by the payload's specific parameters, if any. For more details, see Position Log.

System logs (``-system.log`` extension) are a journal of various system events. Please keep them when contacting our support team.

Also, depending on the specific payload used, you may get the following log files, for example:

- GPR data log in SEG-Y format: *-gpr.sgy
- Echosounder data log in SEG-Y format: *-echo.sgy
- Echosounder data log in NMEA format: *-nmea.txt
- Gas detector data log in NMEA format: *-pergam-*.log

GPR data logs (-gpr.sgy suffix) contain radar trace data in SEG-Y format. These files can be analyzed in PC applications such as Prism2 or similar software capable of reading and processing GPR data in SEG-Y format.

Echosounder data logs in SEG-Y format (-echo.sgy suffix) contain sounding trace data. These files can also be analyzed in the SEG-Y data processing software.

Echosounder data logs in NMEA 0183 format (-nmea.txt suffix) contain bathymetric data. These files can be processed in any software capable of handling data in NMEA 0183 format (e.g., ReefMaster).

Gas detector data logs in mixed NMEA 0183 + raw messages format (-pergam.txt suffix) contain measured concentration data. These files can be processed in Pergam's proprietary software.

The filename contains sequential numbers (000001, 000002, etc.) before time synchronization and date/time (in YEAR-MONTH-DAY-HOUR-MIN-SEC format) after synchronization with GPS. The time is UTC.

Logging (except system log) is started only by command from UgCS-CPM (using the Record/Stop button) or automatically after taking off. The system log begins after onboard software is started.

Logs with the same file names have been created simultaneously. When the filename is to be changed (e.g., after time synchronization), a new set of logs is created.

The logs can be automatically divided by file size, time, trace count (GPR or echosounder only), and waypoints. This option is turned off by default. To enable it, set the corresponding parameters to values greater than zero in the <code>[APP]</code> section. More than one parameter can be set simultaneously. In this case, splitting will be fulfilled when the first of the selected conditions occurs:

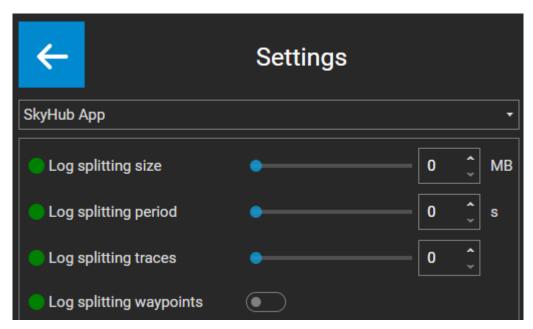


Figure 36.1. UgCS-CPM Logging Settings

When LOG_SPLIT_WAYPOINTS is set to 1 or another value greater than zero, each log file will contain one flight line with two waypoints.

For how to download log files using UgCS-CPM, see section Log Files Management.

Position Log

Position logs contain a common parameter group and the payload's specific parameters, if any. Common parameter columns are filled in with the latest received value. Specific payload columns are filled in at the moment when the payloads receive data, excluding altimeters, whose columns are written as common parameters.

New records are added to the Position Log at every unique timestamp when the payload column is updated. Updates for the common timestamp are merged into a single log record. If payloads don't receive data during a 100 ms period, the Position Log starts logging only common parameters at a 10 Hz rate.

37.1 Common Columns Description

Header	Unit	Description
Flancad	ma	Number of milliseconds passed from the log
Elapsed	ms	manager process restart
Date		Date received from the drone. Format: yyyy/M-
Date		M/dd
Time		UTC time received from the drone. Format:
Time		hh:mm:ss.ms
Pitch	deg	Pitch angle of drone attitude
Roll	deg	Roll angle of drone attitude
Heading	deg	Yaw angle of drone attitude
Latitude	deg	GNSS coordinate of drone position (with RTK
Lantude		correction in RTK mode)
Longitudo	deg	GNSS coordinate of drone position (with RTK
Longitude		correction in RTK mode)
		Drone altitude over home point in meters.
Altitude	m	Calculated as Fused altitude (reported by FC)
		minus starting point altitude.
Next WP		Index of next waypoint
Velocity	m/s	Drone speed over ground (m/s)
RTK Status		Is RTK mode ON or OFF
		GNSS altitude over globe. GPS/RTK depends
Ellipsoidal Height	m	on the mode. RTK altitude for the RTK mode.
		GPS altitude for the non-RTK mode.
ALT:Altitude	m	Altitude reported by configured altimeter.

37.2 Anemometer Columns Description

Column name	Unit	Description
AIR:Speed	m/s	Measured wind speed
AIR:Direction	deg	Measured wind direction relative to magnetic north or sensor body according to sensor configuration.

37.3 Altimeter Columns Description

Column name	Unit	Description
ALT:Altitude	m	Measured altitude
ALT:ID		Identification string to distinguish values from multiple altimeters

37.4 Echosounder Columns Description

Column name	Unit	Description
ECHO:Depth	m	Measured depth
ECHO:Depth Hi	m	Measured depth on high acoustic frequency.
ECHO.Depui III	111	Support for dual frequency echosounder
ECHO:Depth Lo	m	Measured depth on low acoustic frequency.
Berro.Beptii Bo	III	Support for dual frequency echosounder
		Depth with taking into account sensor position
		relative to the waterline. True Depth calculates
ECHO:True Depth	m	using ALT:Altitude value and
		the ECHOSOUNDER/CABLE_LENGTH_M
		configuration paramater.
		Depth on high acoustic frequency with taking
		into account sensor position relative to
ECHO:True Depth Hi	m	the waterline. True Depth Hi calculates using
		ALT: Altitude value and the ECHOSOUNDER/-
		CABLE_LENGTH_M configuration paramater.
		Support for dual frequency echosounder
	m	Depth on low acoustic frequency with taking
		into account sensor position relative to the waterline. True Depth Hi calculates using
ECHO:True Depth Lo		ALT:Altitude value and the ECHOSOUNDER/-
		CABLE_LENGTH_M configuration paramater.
		Support for dual frequency echosounder
ECHO:Temperature	°C	Temperature in degrees Celsius
ECHO:Trace	C	Trace number in SEG-Y file
Letto. Hace		Trace number in SEG-Y file for high acoustic
ECHO:Trace Hi		frequency. Support for dual frequency
Leno.mace m		echosounder
		Trace number in SEG-Y file for low acoustic
ECHO:Trace Lo		frequency. Support for dual frequency
20110.11400 20		echosounder
ECHO:Pitch	deg	Pitch angle received from the payload
		C

ECHO:Roll	deg	Roll angle received from the payload

37.5 Cerulean Sonar Surveyor 240-16 Columns Description

Column name	Unit	Description
MBES:Depth	m	Measured depth
MBES:True Depth	m	Depth from the surface.
MBES:Temperature	°C	Temperature in degrees Celsius
MBES:Pressure	bar	Water pressure in bars
MBES:Pitch	deg	Pitch angle received from the payload
MBES:Roll	deg	Roll angle received from the payload

37.6 FluX Aero Methane Sniffer Columns Description

Column name	Unit	Description
GAS:Concentration 1	ppm	Concentration for gas 1
GAS:Concentration 2	ppm	Concentration for gas 2
GAS:Temp	deg	Sensor temperature in Celsius

37.7 Pergam Falcon 1/2/Plus Columns Description

Column name	Unit	Description
GAS:Methane	$ppm \times m$	Measured concentration in ppm (parts per million) per meter
GAS:Status		Specific status for the payload: 0: on measuring (but the intensity is low, measure value is not accurate as 1); 1: on measuring (with good intensity level); 2-4: N/A; 5: not enough reflection (very low intensity, value is not accurate); 6: too much reflection (high density gas); 7: too much reflection (not able to measure by interfering of sunlight, etc); 8: N/A; 9: stop, no measuring

37.8 GPS Receiver Columns Description

Column name	Unit	Description
GNSS:Date		Date
GNSS:Time		Time
GNSS:Latitude	deg	Latitude
GNSS:Longitude	deg	Longitude
GNSS:Altitude	m	Altitude above/below mean-sea-level (geoid)

GNSS:Quality Indicator		GPS Quality Indicator: 0: fix not available; 1: GPS fix; 2: Differential GPS fix; 3: PPS fix; 4: RTK; 5: float RTK; 6: estimated (dead reckoning); 7: manual input mode; 8: simulation mode
GNSS:Satellites		Number of satellites in use
GNSS:HDOP	m	Horizontal dilution of precision
GNSS:Undulation	m	Geoidal separation, the difference between the WGS-84 earth ellipsoid and mean-sea-level (geoid). Negative value means mean-sea-level below ellipsoid

37.9 Ground-Penetrating Radar Columns Description

Column name	Unit	Description
GPR:Trace		Trace number in SEG-Y file

37.10 Ebinger VEMOS AIR Columns Description

Column name	Unit	Description
MD:Sensor ID		Configured sensor identifier PAYLOAD_ID
MD:Value		Value from the sensor

37.11 Obstacle Detector Columns Description

Column name	Unit	Description
OBS:Sector1	m	Distance to the nearest obstacle in the sector 1
OBS:Sector2	m	Distance to the nearest obstacle in the sector 2 (central sector)
OBS:Sector3	m	Distance to the nearest obstacle in the sector 3
OBS:ID		Number of instance which generated the record

37.12 Lightware SF30/D Altimeter Description

Column name	Unit	Description
SF:RawF	m	First return raw
SF:FiltF	m	First return filtered
SF:SgthF	%	First return strength
SF:RawL	m	Last return raw
SF:FiltL	m	Last return filtered
SF:SgthL	%	Last return strength
SF:Noise		Background noise
SF:Temp	°C	Temperature in degrees
		Celsius

Log Files Management

38.1 Access to the log files

- 1. Establish an Auxiliary connection to the SkyHub using Wi-Fi or through the Ethernet cable. See Preparation guide for instructions.
- 2. When the Auxiliary connection is established, launch the UgCS-CPM software.
- 3. Click on the "Tools" section.
- 4. From the drop-down list select the "Logs management".

38.2 Data download

- 1. Press the Browse button to choose the destination folder for log files.
- 2. Select the desired date and file extensions you wish to download.
- 3. Press the "Download" button and wait for the process to complete.

Note After the log files are no longer needed, you can delete them all using the "Erase All" button.

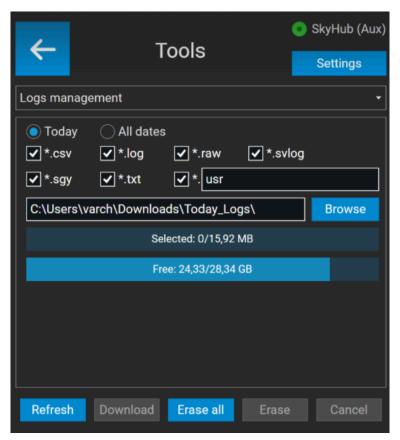


Figure 38.1. UgCS-CPM Log management window

Upgrade/Downgrade Firmware

Note All manipulations with the firmware can be done only over the Auxiliary connection.

Warning The firmware version on the SkyHub must match the UgCS-CPM version on your computer. If there is a version mismatch, you will get a system message accordingly.

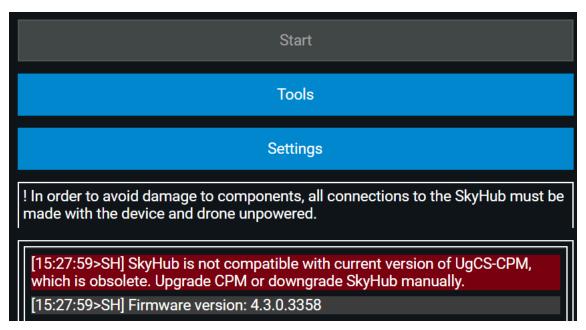


Figure 39.1. UgCS-CPM Firmware mismatch message

39.1 Firmware upgrade process

In general, if the UgCS-CPM version on your computer is newer than the firmware version on the SkyHub, upon establishing the Auxiliary connection, you will receive the popup notification, with the changelog.

You can confirm, accept, and install the upgrade right away.

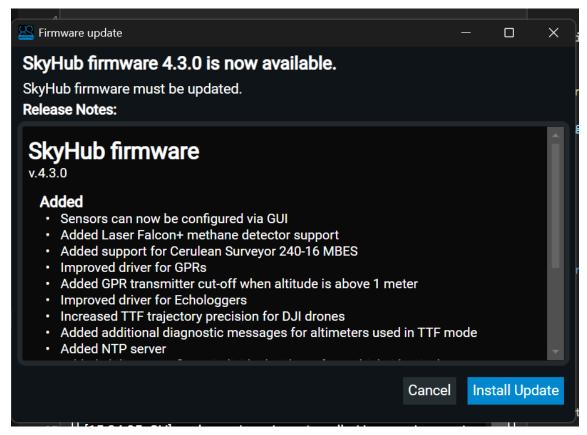


Figure 39.2. UgCS-CPM Firmware upgrade popup

Alternatively, it is possible to initiate the upgrade process manually, by selecting an exact version you wish to upgrade to:

- 1. Connect the PC to the SkyHub using Wi-Fi or by Ethernet cable. See Preparation guide for instructions.
- 2. Open UgCS-CPM and go to "Tools".
- 3. From the drop-down list, select "Manage SkyHub".
- 4. Click the "Browse" button and select the firmware file you wish to upgrade to.

Figure 39.3. UgCS-CPM Manage SkyHub Section

Note The latest SkyHub firmware compatible with the installed UgCS-CPM is located in UgCS-CPM/firmware folder - C:/Program Files (x86)/UgCS-CPM/firmware

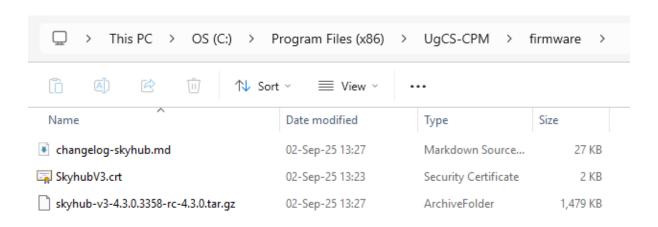


Figure 39.4. UgCS-CPM Firmware folder

- 5. When the firmware is selected, press the "Upgrade" button.
- 6. Firmware installation will start.

Note The upgrade process takes around 10 - 15 minutes. First, the firmware is uploaded to SkyHub, then the installation process starts automatically and will complete even if the connection with SkyHub is lost. If the firmware update is run over Wi-Fi, the connection with SkyHub will be lost once SkyHub restarts after the upgrade. Look for SkyHub Wi-Fi to appear in the Windows Wi-Fi list and reconnect. If the firmware update is run over Ethernet, the connection with SkyHub will be established automatically after the restart.

39.2 Firmware downgrade process

The downgrade process is quite similar to the upgrade. The only difference is that after the SkyHub firmware downgrade, you must reinstall the UgCS-CPM software as well to match the versions.

- 1. Connect the PC to the SkyHub using Wi-Fi or by Ethernet cable. See Preparation guide for instructions.
- 2. From the drop-down list, select "Manage SkyHub".
- 3. Click the "Browse" button and select the firmware file you wish to downgrade to.
- 4. Click the "Upgrade" button.
- 5. Wait for the downgrade process to finish.
- 6. Uninstall the current UgCS-CPM version and install the corresponding version for the firmware you just downgraded to.
- 7. Downgrade is complete.

Note Depending on the version you are downgrading to, it might be necessary to delete the existing configuration file and reconfigure both autopilot and payloads from scratch.

Configuration Parameter Reference

40.1 SkyHub Configuration Parameters

40.1.1 Application Settings

Parameter	Default	Min	Max	Precision	Unit	Description
Log splitting size	0	0	10000	1	MB	Log splitting by file size, MB
Log splitting period	0	0	36000	1	S	Period of log splitting, seconds
Log splitting traces	0	0	1000	1		Log splitting by trace number (applicable to GPR and echosounder only)
Log splitting waypoints	False					Log splitting by waypoint count. If set to 1, each log will contain one line with two waypoints.
Minimum free space	300	0	10000	1	MB	Minimum allowable free space of internal SkyHub memory, MB
Payloads start delay	5	0	36000	1	s	Delay of payload plugin startup, seconds
Payload stauts period	500	0	36000	1	ms	Period of payload status sending to ground, ms
Telemetry refresh period	200	0	36000	1	ms	Telemetry data refresh period, ms
System information monitor	False					Enable system load statistics log sysin- fo.log
Sysinfo period	1.0	0	60	0.1	S	Pooling period to write new records
Log the debug info	False					Enable debug log level for system.log
Green LED	False					Initial state for the Green LED pin (GPIO20). True = high state False = low state
Red LED	False					Initial state for the Red LED pin (GPI-O21). True = high state False = low state
Payload Power pin	False					Initial state for the Payload Power pin (GPIO24). True = high state False = low state

40.1.2 Autopilots Settings

Parameter	Default	Unit	Description
DJI	False		Enable SkyHub communication with DJI M300 / M350

MAVLINK False Enable SkyHub communication with Pixhawk based auto

40.1.3 Obstacle Avoidance Settings

Parameter	Default	Min	Max	Precision	Unit	Options	Description
Safety action	STOP_AND_HOVER					RETURN_TO_HOME, STOP_AND_HOVER, WARNING, NOTHING	Drone action flying to close to obstacle
Activation altitude	10.0	0.0	500.0	0.01	m		Obstacle Avoidance activation altitude
Activation speed	4.0	0.0	15.0	0.01	m/s		Obstacle Avoidance activation speed
Altitude source	Default					Lightware SF30D, Ainstein US-D1, Nanoradar NRA24, DJI (autopilot), Default	Altitude source that will be used for obstacle avoidance activation
Minimal safety distance threshold	0.5	0.0	50.0	0.01	m		Minimal distance to obstacle to detect. Values below this limit will be ignored
Safety distance limit	5.0	0.0	50.0	0.01	m		Safety distance at which fail- safe is trig- gered
Altimeter safety source	None					None, Lightware SF30D, Ainstein US-D1, Nanoradar NRA24, Default	Safety distance sources
Radar safety source	No radar					Nanoradar MR72, No radar	Safety distance sources

40.1.4 Grasshopper Flightmode Settings

Parameter	Default	Min	Max	Precision	Unit	Description		
Safe altitude	5	0.1	50	0 0.1	m	Safe altitude drone will take in case of		
Sale altitude	3	0.1	30	0.1 m		0.1		failsafe or at the end of the route
Descendant altitude	3.0	0.0	1000.0	0.01	m	Grasshopper descent altitude		
Target altitude	5.0	0.0	1000.0	0.01	m	Grasshopper flight target altitude		
Descent speed	1.0	0.0	1000.0	0.01	m	Descent speed at grasshopper action		
Descent speed	1.0	0.0	1000.0	0.01	m	points		

40.1.5 Altimeter Settings

Parameter	Default	Min	Max	Precision	Unit	Options	Description
Max	20	1	100	0.1	m		Higher value from sensor will appear red
Min	1	0.1	100	0.1	m		Lower value from sensor will appear red
Safe altitude	5	0.1	50	0.1	m		Safe altitude drone will take in case of failsafe or at the end of the route
Ignore errors	0	0	1000	1			Maximum number of ignoring fails received in a row
Default altimeter	The first configured altimeter					Lightware SF30D, Ainstein US-D1, Nanoradar NRA24, Mavlink (autopilot), The first configured altimeter	Default altimeter selection for flight navigation

40.1.6 Mavlink Settings

Parameter	Default	Min	Max	Precision	Unit	Options	Description
Connection type	UART					UART, TCP, UDP	Connection type - UART, TCP or UDP
SkyHub interface	Connector #3 (AMA2)					Connector #2 (S0), Connector #3 (AMA2)	Serial connection port or IP address for TCP / UDP
Baud rate / port	230400					230400, 460800, 921600	Serial port baudrate or port number for TCP / UDP connection
Component ID	5	1	200	1			Mavlink Component ID
System ID	2	1	200	1			Mavlink System ID
Use drone altimeter	True						Must be disabled, if SkyHub altimeter data is forwarded
Use SkyHub altimeter	False						Data from SkyHub altimeter will be forwarded to autopilot
Ground data interval	20	0	1000	10	ms		Sending interval of sensor data from internal queue to the ground station.
Telemetry rate	10	0	100	10	Hz		Telemetry frequency, Hz

V2 Extension	True					Using MAVLink V2_EXTENSION messages
Altimeter Component ID	5	1	200	1		Mavlink Component ID for SkyHub altimeter
Altimeter System ID	2	1	200	1		Mavlink System ID for SkyHub altimeter
Mavlink Payload ID	2	1	200	1		Mavlink Payload ID for SkyHub altimeter
Active altimeter	Default				Lightware SF30D, Ainstein US-D1, Nanoradar NRA24, Mavlink (autopilot), Default	Altimeter which readings are used for position data. Must be selected when SkyHub altimeter is forwarded over Mavlink

[•] genindex

[•] search